

PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model

Cheng Cui, Ting Sun, Suyin Liang, Tingquan Gao, Zelun Zhang, Jiaxuan Liu, Xueqing Wang, Changda Zhou, Hongen Liu, Manhui Lin, Yue Zhang, Yubo Zhang, Handong Zheng, Jing Zhang, Jun Zhang, Yi Liu, Dianhai Yu, Yanjun Ma

PaddlePaddle Team, Baidu Inc. paddleocr@baidu.com

O Source Code: https://github.com/PaddlePaddle/PaddleOCR

Models & Online Demo: https://huggingface.co/PaddlePaddle

Abstract

In this report, we propose PaddleOCR-VL, a SOTA and resource-efficient model tailored for document parsing. Its core component is PaddleOCR-VL-0.9B, a compact yet powerful vision-language model (VLM) that integrates a NaViT-style dynamic resolution visual encoder with the ERNIE-4.5-0.3B language model to enable accurate element recognition. This innovative model efficiently supports 109 languages and excels in recognizing complex elements (e.g., text, tables, formulas, and charts), while maintaining minimal resource consumption. Through comprehensive evaluations on widely used public benchmarks and in-house benchmarks, PaddleOCR-VL achieves SOTA performance in both page-level document parsing and element-level recognition. It significantly outperforms existing solutions, exhibits strong competitiveness against top-tier VLMs, and delivers fast inference speeds. These strengths make it highly suitable for practical deployment in real-world scenarios.

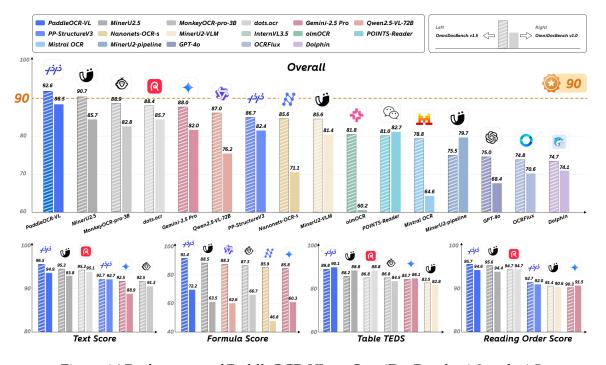


Figure 1 | Performance of PaddleOCR-VL on OmniDocBench v1.0 and v1.5.

Contents

1	1 Introduction	3
2	2 PaddleOCR-VL	4
	2.1 Architecture	
	2.2 Training Recipe	 7
3	3 Dataset	9
	3.1 Data Curation	 9
	3.2 Automatic Data Annotation	 10
	3.3 Hard Cases Mining	 10
4	4 Evaluation	10
	4.1 Page-level Evaluation	 11
	4.2 Element-level Evaluation	 13
	4.3 Inference Performance	 17
5	5 Conclusion	18
A	A Training Dataset Details	25
	A.1 Text	 25
	A.2 Table	 26
	A.3 Formula	 27
	A.4 Chart	 28
В	B Supported Languages	30
C	C Inference Performance on Different Hardware Configurations	31
D	D Real-world Samples	32
	D.1 Comprehensive Document Parsing	 33
	D.2 Layout Detection	37
	D.3 Reading Order	 40
	D.4 Text Recognition	 42
	D.5 Table Recognition	 51
	D.6 Formula Recognition	 53
	D.7 Chart Recognition	 55
E	E Compare with Others	58
	E.1 Layout Detection	 59
	E.2 Text Recognition	 61
	E.3 Table Recognition	 67
	E.4 Formula Recognition	 69
	E.5 Chart Recognition	 70

1. Introduction

Documents serve as core information carriers, with their complexity and volume growing at an exponential rate, making document parsing an indispensable key technology. The primary goal of document parsing [1, 2, 3, 4] is to enable deep structural and semantic understanding of a document's layout. Specifically, it involves recognizing distinct text blocks and columns, distinguishing formulas, tables, charts, and images, determining the correct reading order, and detecting key elements (e.g., footnotes and image captions); these capabilities collectively lay a solid foundation for efficient information retrieval and data management. Furthermore, advanced document parsing enables large language models (LLMs) [5, 6, 7], especially when combined with Retrieval-Augmented Generation (RAG) [8], to access high-quality knowledge and enhance their practical applications.

The inherent complexity of modern documents presents unique challenges: they often combine dense text, complex tables or chart, mathematical expressions, multiple languages and handwritten texts, with deserve layout structures. Recent research [1, 9, 10, 11, 12] in the field of document parsing primarily following two technological approaches. The first approach [9, 10] employs pipeline methodologies based on specialized, modular expert models. Although these methods offer strong performance, they are increasingly hindered by integration complexity, cumulative error propagation, and inherent limitations when handling highly complex documents. Secondly, end-to-end approaches [12, 13, 14] leveraging multimodal models aim to simplify the workflow and enable joint optimization. However, these methods often struggle with correct text order and can even generate hallucinations when faced with lengthy or complex layouts, while also incurring substantial computational overhead for long sequence outputs, thereby restricting their practical deployment.

To address these advancements and challenges, we present PaddleOCR-VL, a high-performance, resource-efficient document parsing solution based on a vision-language model. This innovation paves the way for the widespread application of multimodal document parsing, particularly in resource-constrained environments. PaddleOCR-VL combines a robust layout analysis model with a compact yet powerful vision-language model, PaddleOCR-VL-0.9B.

Firstly, PaddleOCR-VL performs layout detection and reading order prediction to obtain the positional coordinates and reading order of elements (text blocks, tables, formulas, and charts). Compared to multimodal methods that rely on grounding and sequence output (e.g., MinerU2.5 [2], Dolphin [3]), our method offers faster inference speeds, lower training costs, and easier extensibility for new layout categories. Subsequently, the elements are segmented based on their positions and fed into PaddleOCR-VL-0.9B for recognition. This vision-language model is specifically designed for resource-efficient inference and excels at element recognition within document parsing. By integrating a NaViT-style [15] dynamic high-resolution visual encoder with the lightweight ERNIE-4.5-0.3B [5] language model, we have significantly enhanced the model's dense text recognition capabilities and decoding efficiency.

To train a powerful multimodal model, we have developed a high-quality training data construction pipeline. We collected over 30 million training samples through public data acquisition and data synthesis. We meticulously designed prompt engineering to guide the automatic labeling by general large models, based on the recognition results of expert models. Simultaneously, We performed data cleaning to remove low-quality or inconsistent annotations, such as those caused by model hallucinations. We designed an evaluation engine, which is an assessment collection that categorizes each element into more detailed categories. Through this automated evaluation, we can analyze the current model's training performance across different

types. This allows us to conduct targeted hard sample mining based on element types and to construct similar challenging examples through data synthesis. Finally, we incorporated manual annotation for a small number of corner cases to complete the construction of the training data.

Comprehensive benchmarking on the public benchmarks, including OmniDocBench v1.0, v1.5 [16] and olmOCR-Bench [12], and in-house ones demonstrate that PaddleOCR-VL achieves SOTA performance in document parsing task, significantly outperforming existing pipeline-based solutions and exhibiting strong competitiveness against leading vision-language models (VLMs). Moreover, PaddleOCR-VL is optimized for efficiency, delivering substantially lower latency and higher throughput than competing approaches.

PaddleOCR-VL actively addresses current challenges in document processing with a high-performance, resource-efficient multimodal document parsing solution. Its key contributions include:

- Compact yet Powerful VLM Architecture: We present a novel vision-language model that is specifically designed for resource-efficient inference, achieving outstanding performance in element recognition. By integrating a NaViT-style dynamic high-resolution visual encoder with the lightweight ERNIE-4.5-0.3B language model, we significantly enhance the model's recognition capabilities and decoding efficiency. This integration maintains high accuracy while reducing computational demands, making it well-suited for efficient and practical document processing applications.
- **High-quality Data Construction Methodology:** We propose a systematic and comprehensive methodology for constructing high-quality datasets, providing a solid train data foundation for efficient and robust document parsing. This methodology not only enables us to construct high-quality data on demand, but also provides a new perspective on the automated generation of high-quality data.
- SOTA Performance Document Parsing: PaddleOCR-VL achieves state-of-the-art performance in document parsing task. It excels in recognizing complex document elements, such as text, tables, formulas, and charts, making it suitable for a wide range of challenging content types, including handwritten text and historical documents. Supporting 109 languages, including major global languages and those with diverse scripts like Russian, Arabic, and Hindi, PaddleOCR-VL is highly applicable to multilingual and globalized document processing scenarios.

2. PaddleOCR-VL

2.1. Architecture

PaddleOCR-VL decomposes the complex task of document parsing into a two stages, as illustrated in Figure 2. The first stage, PP-DocLayoutV2, is responsible for layout analysis, where it localizes semantic regions and predicts their reading order. Subsequently, the second stage, PaddleOCR-VL-0.9B, leverages these layout predictions to perform fine-grained recognition of diverse content, including text, tables, formulas, and charts. Finally, a lightweight post-processing module aggregates the outputs from both stages and formats the final document into structured Markdown and JSON.

2.1.1. Layout Analysis

Considering that end-to-end approaches based on VLM rely on long-sequence autoregressive processes, which result in high latency and memory consumption, and increase the risk of

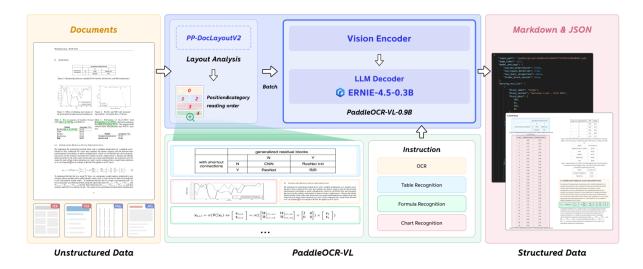


Figure 2 | The overview of PaddleOCR-VL.

unstable layout analysis and hallucinations—problems that are particularly pronounced in multi-column or mixed text–graphic layouts—we employ a dedicated lightweight model for layout analysis, focusing specifically on element detection, classification, and reading order prediction.

Specifically, we decouple the layout analysis process by introducing an independent model, PP-DocLayoutV2, dedicated solely to this task. PP-DocLayoutV2 consists of an object detection model (RT-DETR [17]) for elements localization and classification, as well as a lightweight pointer network [18] with six transformer layers to accurately predict the reading order of layout elements.

This separation enables us to fully leverage the advanced capabilities of the vision model, which typically requires lower input image resolution, and contains significantly fewer parameters. As a result, it achieves stable and accurate layout analysis, without the instability issues that may arise in end-to-end approaches.

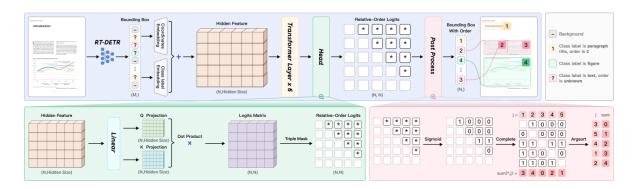


Figure 3 | Architecture of layout analysis model.

Architecturally, PP-DocLayoutV2 is composed of two sequentially connected networks, as shown in Figure 3. The first is an RT-DETR-based [17] detection model that performs layout element detection and classification. The detected bounding boxes and class labels are then passed to a subsequent pointer network, which is responsible for ordering these layout elements.

Specifically, we first apply per-class thresholds to select foreground proposals for the ordering network. The selected proposals are embedded using absolute 2D positional encodings and class label embeddings. Additionally, the encoder attention incorporates a geometric bias mechanism from Relation-DETR [18] to explicitly model pairwise geometric relationships among elements. The pairwise relation head linearly projects element representations into query and key vectors, then computes bilinear similarities to produce pairwise logits, resulting in an $N \times N$ matrix that represents the relative order between each pair of elements. Finally, a deterministic win-accumulation decoding algorithm recovers a topologically consistent reading order for the detected layout elements.

In comparison to other specialized models, such as LayoutReader [19], our model achieves higher performance with fewer parameters by efficiently extending RT-DETR [17] with a pointer network.

2.1.2. Element-level Recognition

We systematically explore architecture configurations optimized for high accuracy and low computational overhead, and propose the PaddleOCR-VL-0.9B as shown in Figure 4.

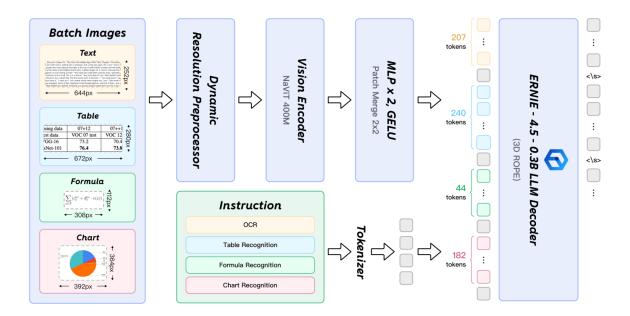


Figure 4 | Architecture of PaddleOCR-VL-0.9B.

We adopted an architectural style inspired by LLaVA [20], integrating a pre-trained vision encoder with a dynamic resolution preprocessor, a randomly initialized 2-layer MLP projector, and a pre-trained large language model. Our architecture achieves a balance the scale of vision and language models to optimize performance in multi-elements recognition tasks.

Compared to earlier document parsing models based on fixed-resolution or tiling-based approaches [4, 14, 21], our approach utilizes native dynamic high-resolution preprocessing. For the vision encoder, we employed a NaViT-style [15] encoder initialized from Keye-VL's [22] vision model, which support native-resolution inputs. This design enables the vision-language model to handle images of arbitrary resolution without distortion, yielding fewer hallucinations and stronger performance on text-intensive tasks.

The projector is a randomly initialized 2-layer MLP with GELU [23] activation, incorporating a merge size of 2 to efficiently bridge visual features from the encoder to the language model's embedding space.

In auto-regressive language models, the entire sequence is generated by predicting one token at a time. This approach means that the size of the decoder is directly linked to the overall inference latency, so a smaller model will decode faster. With this in mind, we use the ERNIE-4.5-0.3B [5] model, an open-source language model that balances a relatively small number of parameters with strong inference efficiency. In our implementation, we further enhance positional representation by incorporating a 3D-RoPE[24].

The combination of NaViT [15] with ERNIE-4.5-0.3B [5] has led to significant performance improvements in documents parsing, achieving minimal memory usage and faster inference speed.

2.2. Training Recipe

The following sections introduce the training details of these two modules: PP-DocLayoutV2 for layout analysis and PaddleOCR-VL-0.9B for element recognition.

2.2.1. Layout Analysis

We employ the PP-DocLayoutV2 model to perform layout element localization, classification, and reading order prediction. PP-DocLayoutV2 extends RT-DETR [17] by incorporating an additional pointer network [18], which is responsible for predicting the reading order of detected elements. The training process adopts a two-stage strategy: we first train the core RT-DETR [17] model for layout detection and classification. Afterward, we freeze its parameters and independently train the pointer network for reading order prediction.

For the first stage, we follow the training strategy of RT-DETR [17]. Specifically, we initialize the model with PP-DocLayout_Plus-L [25] pretrained weights and train it for 100 epochs on our self-constructed dataset comprising over 20,000 high-quality samples.

For the second stage, specifically, the model outputs a matrix representing the pairwise ordering relationships between any two elements, and the Generalized Cross Entropy Loss [26] is computed with respect to the ground truth labels, as this loss function demonstrates increased robustness in scenarios where pre-annotated data are mixed into the dataset. We utilize a constant learning rate 2e-4 and the AdamW optimizer to train 200 epochs.

2.2.2. Element-level Recognition

As described in Section 2.1.2, PaddleOCR-VL-0.9B consists of three modules: a vision encoder, a projector, and a language model. We adopt a post-adaptation strategy using pre-trained models. Specifically, the vision model is initialized with Keye-VL's weights, and the language model is initialized with ERNIE-4.5-0.3B's weights. The model is trained based on the ERNIEKit [27] repository and the training methodology for our VLM is divided into two stages, as outlined in Table 1.

Stage 1: The initial stage focuses on pre-training alignment, where the model learns to associate visual information from images with corresponding textual representations. This crucial step is performed on a massive dataset comprising 29 million high-quality image-text pairs. During this phase, which runs for one epoch, the model is trained to establish a coherent

Stages	Stage 1	Stage 2
Training Samples	29M	2.7M
Max Resolution	$1280 \times 28 \times 28$	$2048 \times 28 \times 28$
Sequence length	16384	16384
Trainable components	All	All
Batch sizes	128	128
Data Augmentation	Yes	Yes
Maximum LR	5×10^{-5}	5×10^{-6}
Minimum LR	5×10^{-6}	5×10^{-7}
Epoch	1	2

Table 1 | Training settings in stage 1 and stage 2.

understanding between diverse visual inputs and their semantic textual content. The training utilizes a batch size of 128, a sequence length of 16384, and supports a maximum image resolution of $1280\times28\times28$, with data augmentation enabled to improve robustness. For optimization, the learning rate is scheduled between a maximum of 5×10^{-5} and a minimum of 5×10^{-6} . The primary objective is to align the feature spaces of the vision encoder and the language model, enabling them to jointly process multimodal information effectively. This large-scale pre-training allows the model to capture intricate visual patterns, common textual structures, and their interdependencies across a vast range of contexts, laying a strong foundation for subsequent specialized tasks.

Stage 2: Following pre-training, the model undergoes **instruction fine-tuning** to adapt its general multimodal understanding to specific downstream elements recognition tasks. This stage utilizes a meticulously curated dataset of 2.7 million samples, which is intentionally designed to be highly rich and diverse in its distribution. The training is conducted over two epochs, maintaining the 128 batch size and 16384 sequence length, but increasing the maximum resolution to $2048\times28\times28$ to handle more detailed inputs. A finer learning rate is adopted, with the maximum and minimum values set to 5×10^{-6} and 5×10^{-7} , to carefully adjust the model on specialized data. The richness of this dataset encompasses a wide variety of document types, languages, writing systems, and visual complexities pertinent to real-world scenarios. During this fine-tuning phase, the model is trained with explicit instructions for four types of tasks:

- 1. **OCR:** This task fine-tunes the model to accurately identify and extract textual content from images, encompassing individual characters, words, text lines, text blocks and simple layout structure of page-level texts.
- 2. **Table Recognition:** The model learns to parse tabular structures within documents. This involves accurately extracting cell contents, identifying rows and columns, and recognize the logical relationships between different table elements, ultimately generating structured representations based on OTSL [28] format.
- 3. **Formula Recognition:** This instruction focuses on enabling the model to recognize and interpret mathematical and scientific formulas. It aims to convert their visual representation into a structured LaTeXformat and distinguishes between inline \(...\) and display \[...\] equations.
- 4. **Chart Recognition:** This task trains the model to recognition information from various types of charts, such as bar charts, line graphs, and pie charts and convert Markdown format tables.

3. Dataset

To build our high-quality and diverse training dataset, we propose a systematic methodology for constructing such datasets. As illustrated in Figure 5, we gather a diverse set of data from multiple sources to ensure comprehensive coverage. High-quality labels are then generated through automated annotation using large models, which guarantees precision and consistency. Additionally, we refine the training data by integrating challenging examples, which enhances the model's performance and robustness. Each of these crucial steps is detailed in the following sections.

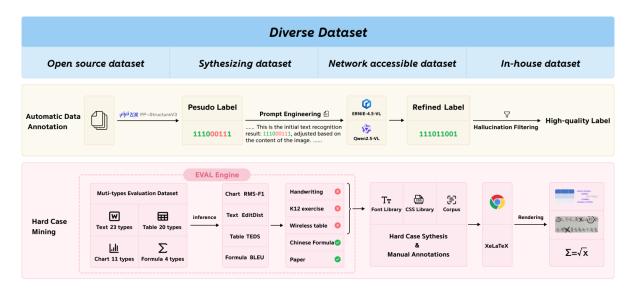


Figure 5 | The construction process of training data for PaddleOCR-VL-0.9B.

3.1. Data Curation

To ensure the breadth and diversity of the dataset, data is collected from four main sources: open-source dataset, synthesizing dataset, network accessible dataset, and in-house dataset.

- 1. **Open Source Dataset:** As the foundation of our dataset, we systematically aggregated and curated a wide array of established public datasets. For textual content, we sourced data from the canonical dataset CASIA-HWDB [29]. Our mathematical expression data is derived from UniMER-1M [30] and MathWriting [31]. To ensure comprehensive coverage of data visualizations, we incorporated a rich spectrum of chart and graph datasets, including ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36], Beagle [37], Chart-INFO [38], visText [39], and ExcelChart [40]. Each of these sources underwent an initial filtering and cleaning protocol to rectify or discard noisy and low-quality annotations.
- 2. **Data Synthesizing Dataset:** Due to the naturally imbalanced distribution of public data, we employed a data synthesizing strategy to produce large volumes of missing data types at low cost, providing our proposed model with the unbiased document parsing performance.
- 3. Network Accessible Dataset: To improve model generalization and robustness against the complexities of unstructured real-world documents, we amassed an extensive corpus of publicly accessible data harvested from the Internet. This public collection was deliberately curated to encompass a rich spectrum of document types and visual styles. It includes

academic papers, newspapers, formal scientific journal articles, scanned handwritten documents, diverse examination papers, and slides, etc. The integration of these varied sources proved instrumental in significantly broadening the stylistic, structural, and domain diversity of our training data, thereby mitigating the risk of overfitting to clean, canonical datasets.

4. **In-house Dataset:** Through years of research in the field of OCR, we have accumulated extensive datasets with diverse data types across all tasks of document parsing. We incorporate all in-house datasets into training with precisely controlled proportions, which have become unnecessary factors that enable our models to achieve outstanding performance.

3.2. Automatic Data Annotation

After acquiring the raw data, we utilize an automatic data annotations process for large-scale labeling. Initially, we employ the expert model, PP-StructureV3, to conduct preliminary processing on the data, generating pseudo labels that may contain some inaccuracies. Subsequently, through prompt engineering, we create prompts that include the original images and their associated pseudo labels, which are then submitted to more advanced multimodal large language models, ERNIE-4.5-VL [5] and Qwen2.5VL [24]. These sophisticated models refine and enhance the initial results by analyzing the image content, resulting in improved labels. Finally, to ensure the quality of the labels, the system performs a hallucination filtering step, which eliminates any potentially incorrect content generated by the large models, thereby producing reliable and high-quality labels.

3.3. Hard Cases Mining

To overcome performance bottlenecks in specific complex scenarios, we propose a hard case mining process for targeted performance improvement. We firstly develop a eval engine for various types. We created substantial evaluation data with precisely labeled data obtained through manual annotation. Theses evaluation datasets are categorized into several types: text data includes 23 categories such as Chinese, English, printed, handwritten, Japanese, Latin, and emojis; table data includes 20 categories such as limited tables, unlimited tables, handwritten tables, checklists, invoices, and rotated tables; formula data includes 4 categories such as Chinese and English formulas, handwritten and printed, simple, and complex; chart data includes 11 categories such as Chinese and English charts, line charts, and bar charts, sourced from diverse origins to cover different document. By inference on this evaluation set and using corresponding professional metrics (e.g., EditDist for Text, TEDS [41] for Tables, RMS-F1 [42] for Charts, and BLEU [43] for Formulas), we can accurately identify hard cases where the model performs poorly. Finally, for these identified weaknesses, the system utilizes a rich set of resources (such as Font Library, CSS Library, Corpus) and rendering tools (like XeLaTeX and web browsers) to synthetically generate a large volume of new, high-quality hard cases.

4. Evaluation

To thoroughly assess the effectiveness of PaddleOCR-VL, we compared it against leading general vision language models and specialized document parsing models across multiple public benchmarks and in-house benchmarks. We conducted comprehensive performance comparisons in two aspects: page-level document parsing and element-level recognition, which are detailed in Sections 4.1 and 4.2. Page-level involves analyzing entire pages of a document to parsing their overall content, structure and layout, while element-level is dedicated exclusively

to assessing the recognition of specific elements, such as text, tables, formulas, and charts, within the document.

4.1. Page-level Evaluation

This section details the evaluation of end-to-end document parsing capabilities using the following three benchmarks, aiming to measure its overall performance in real-world document scenarios.

OmniDocBench v1.5 To comprehensively evaluate the document parsing capabilities, we conducted extensive experiments on the OmniDocBench v1.5 [2] benchmark. It is an expansion of version v1.0, adding 374 new documents for a total of 1,355 document pages. It features a more balanced distribution of data in both Chinese and English, as well as a richer inclusion of formulas and other elements. The evaluation method has been updated, with formulas assessed using the CDM method. The overall metric is a weighted combination of the metrics for text, formulas, and tables.

Table 2 demonstrate that PaddleOCR-VL achieves SOTA performance, outperforming existing pipeline tools, general VLMs, and other specialized document parsing models across all key metrics. Specifically, our model achieves a top-ranking overall score of 92.56, surpassing the next best model, MinerU2.5-1.2B (90.67). Moreover, our model establishes new SOTA results in the sub-tasks, including the lowest Text-Edit distance [44] of 0.035, the highest Formula-CDM score of 91.43, the leading scores of 89.76 and 93.52 in Table-TEDS and Table-TEDS-S, and the best readering ordering scores of 0.043, respectively. These results underscore its superior accuracy in text recognition, formula recognition, and complex table structure analysis.

Model Type	Methods	Parameters	Overall↑	Text ^{Edit} ↓	Formula ^{CDM} ↑	Table ^{TEDS} ↑	Table ^{TEDS-S} ↑	Reading Order ^{Edit} ↓
	Marker-1.8.2 [45]	-	71.30	0.206	76.66	57.88	71.17	0.250
Pipeline Tools	Mineru2-pipeline [14]	-	75.51	0.209	76.55	70.90	79.11	0.225
	PP-StructureV3 [10]	-	86.73	0.073	85.79	81.68	89.48	0.073
	GPT-40 [7]	-	75.02	0.217	79.70	67.07	76.09	0.148
	InternVL3-76B [46]	76B	80.33	0.131	83.42	70.64	77.74	0.113
General VLMs	InternVL3.5-241B [47]	241B	82.67	0.142	87.23	75.00	81.28	0.125
	Qwen2.5-VL-72B [24]	72B	87.02	0.094	88.27	82.15	86.22	0.102
	Gemini-2.5 Pro [48]	-	88.03	0.075	85.82	85.71	90.29	0.097
	Dolphin [3]	322M	74.67	0.125	67.85	68.70	77.77	0.124
	OCRFlux-3B [49]	3B	74.82	0.193	68.03	75.75	80.23	0.202
	Mistral OCR [50]	-	78.83	0.164	82.84	70.03	78.04	0.144
	POINTS-Reader [4]	3B	80.98	0.134	79.20	77.13	81.66	0.145
	olmOCR-7B [12]	7B	81.79	0.096	86.04	68.92	74.77	0.121
Specialized VLMs	MinerU2-VLM [14]	0.9B	85.56	0.078	80.95	83.54	87.66	0.086
	Nanonets-OCR-s [51]	3B	85.59	0.093	85.90	80.14	85.57	0.108
	MonkeyOCR-pro-1.2B [1]	1.9B	86.96	0.084	85.02	84.24	89.02	0.130
	MonkeyOCR-3B [1]	3.7B	87.13	0.075	87.45	81.39	85.92	0.129
	dots.ocr [52]	3B	88.41	0.048	83.22	86.78	90.62	0.053
	MonkeyOCR-pro-3B [1]	3.7B	88.85	0.075	87.25	86.78	90.63	0.128
	MinerU2.5 [2]	1.2B	90.67	0.047	88.46	88.22	92.38	0.044
	PaddleOCR-VL	0.9B	92.56	0.035	91.43	89.76	93.52	0.043

Table 2 | Comprehensive evaluation of document parsing on OmniDocBench v1.5. Results are reported by OmniDocBench [16] unless Ours.

OmniDocBench v1.0 A publicly available benchmark dataset specifically is designed to evaluate real-world document parsing capabilities. It comprises 981 PDF pages, spanning 9 distinct

document types, 4 layout styles, and 3 language categories.

Based on the experimental results presented in Table 3, PaddleOCR-VL demonstrates superior performance with an average overall edit distance of 0.115, demonstrating its superior capability in document parsing. The model excels in formula edit distance (0.241 EN, 0.316 ZH), and achieves the SOTA performance (0.062) and a comparable SOTA performance (0.041) for Chinese and English text edit distance respectively, showcasing its accuracy in handling textual and formulaic data. Although the model exhibits slightly lower performance in the English Table TEDS (88.0), this can be largely attributed to typo-related annotation errors in OmniDocBench v1.0. Nevertheless, it demonstrates a clear advantage in the Chinese Table TEDS (92.14). Regarding the reading order edit distance, the model achieves the best performance in Chinese (0.063) and a comparable SOTA result in English (0.045), emphasizing its capability to maintain structural integrity and logical document flow.

Method Type	Methods	AvgOverall ^{Edit} ↓	Overa	ıll ^{Edit} ↓	Text	Edit↓	Formu	ıla ^{Edit} ↓	Table	TEDS↑	Tabl	e ^{Edit} ↓	Readin	ıg Order ^{Edit} ↓
Method Type	Methods	Avgoverali	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH
	Docling-2.14.0 [11]	0.749	0.589	0.909	0.416	0.987	0.999	1	61.3	25.0	0.627	0.810	0.313	0.837
	OpenParse-0.7.0 [53]	0.730	0.646	0.814	0.681	0.974	0.996	1	64.8	27.5	0.284	0.639	0.595	0.641
	Unstructured-0.17.2 [54]	0.651	0.586	0.716	0.198	0.481	0.999	1	0	0.1	1	0.998	0.145	0.387
	Pix2Text-1.1.2.3 [55]	0.424	0.320	0.528	0.138	0.356	0.276	0.611	73.6	66.2	0.584	0.645	0.281	0.499
Pipeline Tools	Marker-1.7.1 [45]	0.397	0.296	0.497	0.085	0.293	0.374	0.688	67.6	54.0	0.609	0.678	0.116	0.329
	Mathpix [56]	0.278	0.191	0.364	0.105	0.381	0.306	0.454	77.0	67.1	0.243	0.320	0.108	0.304
	MinerU-pipeline [9]	0.203	0.162	0.244	0.072	0.111	0.313	0.581	77.4	79.5	0.166	0.150	0.097	0.136
	PP-StructureV3 [10]	0.176	0.145	0.206	0.058	0.088	0.295	0.535	77.2	83.9	0.159	0.109	0.069	0.091
	InternVL2-76B [57]	0.442	0.440	0.443	0.353	0.290	0.543	0.701	63.0	60.2	0.547	0.555	0.317	0.228
	GPT-4o [7]	0.316	0.233	0.399	0.144	0.409	0.425	0.606	72.0	62.9	0.234	0.329	0.128	0.251
General VLMs	InternVL3-78B [46]	0.257	0.218	0.296	0.117	0.210	0.380	0.533	69.0	73.9	0.279	0.282	0.095	0.161
	Qwen2.5-VL-72B [24]	0.238	0.214	0.261	0.092	0.180	0.315	0.434	81.4	83.0	0.341	0.262	0.106	0.168
	Gemini2.5-Pro [48]	0.180	0.148	0.212	0.055	0.168	0.356	0.439	85.8	86.4	0.130	0.119	0.049	0.121
	Nougat [58]	0.713	0.452	0.973	0.365	0.998	0.488	0.941	39.9	0.0	0.572	1	0.382	0.954
	SmolDocling-256M [13]	0.655	0.493	0.816	0.262	0.838	0.753	0.997	44.9	16.5	0.729	0.907	0.227	0.522
	olmOCR-7B [12]	0.398	0.326	0.469	0.097	0.293	0.455	0.655	68.1	61.3	0.608	0.652	0.145	0.277
	GOT [21]	0.349	0.287	0.411	0.189	0.315	0.360	0.528	53.2	47.2	0.459	0.520	0.141	0.280
	OCRFlux-3B [49]	0.294	0.238	0.349	0.112	0.256	0.447	0.716	69.0	80.0	0.269	0.162	0.126	0.263
	Nanonets-OCR-s [51]	0.289	0.283	0.295	0.134	0.231	0.518	0.546	76.8	79.4	0.343	0.201	0.135	0.200
Specialized VLMs	Dolphin [3]	0.259	0.205	0.313	0.092	0.204	0.447	0.606	76.1	66.9	0.193	0.282	0.088	0.160
	MinerU2-VLM [14]	0.186	0.133	0.238	0.045	0.115	0.273	0.506	82.1	83.4	0.150	0.209	0.066	0.122
	MonkeyOCR-pro-1.2B [1]	0.184	0.146	0.221	0.068	0.118	0.272	0.452	81.3	85.5	0.149	0.134	0.093	0.179
	MonkeyOCR-pro-3B [1]	0.172	0.138	0.206	0.067	0.107	0.246	0.421	81.5	87.5	0.139	0.111	0.100	0.185
	dots.ocr [52]	0.143	0.125	0.160	0.032	0.066	0.329	0.416	88.6	89.0	0.099	0.092	0.040	0.067
	MinerU2.5 [2]	0.143	0.111	0.174	0.050	0.074	0.258	0.473	88.3	89.2	0.089	0.083	0.045	0.068
	PaddleOCR-VL	0.115	0.105	0.126	0.041	0.062	0.241	0.316	88.0	92.1	0.093	0.062	0.045	0.063

Table 3 | Comprehensive evaluation of document parsing on OmniDocBench v1.0. Results are reported by OmniDocBench [16] unless MinerU2.5 and Ours.

olmOCR-Bench olmOCR-Bench [12] includes 1,402 PDF documents and 7,010 test cases, addressing diverse document types and extraction challenges. It offers a detailed evaluation framework for PDF content extraction by assessing tools and models through simple, clear, and machine-verifiable unit tests. This approach avoids biased evaluations and soft metric comparisons, allowing for the detection of subtle but significant extraction errors.

Table 4 highlights the outstanding performance of PaddleOCR-VL in the olmOCR-Bench evaluation, achieving the highest overall score of 80.0 ± 1.0 . It excels in various categories, leading in ArXiv (85.7), Headers and Footers (97.0) and securing second place in Multi-column text (79.9), Long Tiny Text (85.7). These results highlight the proposed model's capability to effectively manage diverse document types, reinforcing its status as a top solution in document parsing and its reliability in complex OCR tasks.

Methods					Unit Tes	t Pass Rate↑			
Methods	Overall	ArXiv	Old Scans Math	Tables	Old Scans	Headers and Footers	Multi column	Long Tiny Text	Base
GOT [21]	48.3 ± 1.1	52.7	52.0	0.2	22.1	93.6	42.0	29.9	94.0
Gemini Flash 2 (No Anchor) [48]	57.8 ± 1.1	32.1	56.3	61.4	27.8	48.0	58.7	84.4	94.0
MinerU-pipeline [9]	61.5 ± 1.1	75.4	47.4	60.9	17.3	<u>96.6</u>	59.0	39.1	96.6
Gemini Flash 2 (Anchored) [48]	63.8 ± 1.2	54.5	56.1	72.1	34.2	64.7	61.5	71.5	95.6
Nanonets-OCR-s [51]	64.5 ± 1.1	67.0	68.6	77.7	39.5	40.7	69.9	53.4	99.3
Qwen2.5-VL-7B (No Anchor) [24]	65.5 ± 1.2	63.1	65.7	67.3	38.6	73.6	68.3	49.1	98.3
GPT-40 (No Anchor) [7]	68.9 ± 1.1	51.5	75.5	69.1	40.9	94.2	68.9	54.1	96.7
GPT-4o (Anchored) [7]	69.9 ± 1.1	53.5	<u>74.5</u>	70.0	40.7	93.8	69.3	60.6	96.8
Marker-1.8.2 [45]	70.1 ± 1.1	76.0	57.9	57.6	27.8	84.9	72.9	84.6	99.1
olmOCR v0.1.75 (No Anchor) [12]	74.7 ± 1.1	71.5	71.4	71.4	42.8	94.1	77.7	71.0	97.8
olmOCR v0.1.75 (Anchored) [12]	75.5 ± 1.0	74.9	71.2	71.0	<u>42.2</u>	94.5	78.3	73.3	98.3
MonkeyOCR-pro-3B [1]	75.8 ± 1.0	83.8	68.8	74.6	36.1	91.2	76.6	80.1	95.3
MinerU2.5 [2]	77.5 ± 1.0	81.1	74.0	85.1	33.8	96.3	65.5	89.8	94.4
dots.ocr [52]	79.1 ± 1.0	82.1	64.2	88.3	40.9	94.1	82.4	81.2	99.5
PaddleOCR-VL	80.0 ± 1.0	85.7	71.0	84.1	37.8	97.0	<u>79.9</u>	<u>85.7</u>	98.5

Table 4 | Comprehensive evaluation of document parsing on olmOCR-Bench. Results are reported by olmOCR-Bench [12] unless MinerU2.5 and Ours.

4.2. Element-level Evaluation

This section centers on evaluating the element-level capabilities of PaddleOCR VL 0.9B. We thoroughly assessed four tasks: text, tables, formulas, and charts using both public competition data and in-house data.

4.2.1. Text Recognition

For text recognition, we utilize three benchmarks to validate the effectiveness of models based on the edit distance metric.

OmniDocBench-OCR-block: From the 1355 images of OmniDocBench v1.5, we extracted all text-related sub-images based on layout detection labels, removing any with null annotations. This process resulted in a total of 17,148 block-level images. This evaluation set is named OmniDocBench-OCR-block, with the ground truth still sourced from OmniDocBench. This evaluation set can more accurately assess the model's text recognition performance on without being affected by layout detection. We use the average normalized edit distance for evaluation.

In Table 5, we present a comprehensive comparison of performance across various document types using different models. Our model, PaddleOCR-VL, consistently demonstrates superior performance, achieving the lowest error rates in almost all categories. Specifically, PaddleOCR-VL achieves the best results in the PPT2PDF (0.049), Academic Literature (0.021), Book (0.045), Colorful Textbook (0.081), Exam Paper (0.115), Magazine (0.020), Newspaper (0.034), Note (0.081), and Research Report (0.033) categories. These results highlight PaddleOCR-VL's robust and versatile capability in handling diverse document types, establishing it as the leading method in the OmniDocBench-OCR-block performance evaluation.

Methods	PPT2PDF	Academic Literature	Book	Colorful Textbook	Edit Distance ↓ Exam Paper	Magazine	Newspaper	Note	Research Report
Qwen2.5-VL-72B [24]	0.054	0.023	0.061	0.084	0.195	0.032	0.056	0.118	0.040
MonkeyOCR-pro-3B [1]	0.058	0.021	0.064	0.096	0.116	0.023	0.058	0.124	0.052
MinerÚ2.5 [2]	0.195	0.089	0.111	0.234	0.194	0.147	0.056	0.142	0.094
Dolphin [3]	0.237	0.095	0.135	0.347	0.248	0.233	0.121	0.309	0.213
PaddleOCR-VL	0.049	0.021	0.045	0.081	0.115	0.020	0.034	0.081	0.033

Table 5 | Overall Comparison of OmniDocBench-OCR-block Performance.

In-house-OCR: This is our self-built line-level text evaluation dataset which contains 107452 samples with high-quality labels. The dataset includes various text types such as handwritten Chinese, handwritten English, printed Chinese, printed English, traditional Chinese, ancient texts, general scenarios, Pinyin, obscure characters, vertical text, single characters, emojis, and artistic fonts. It also comprises evaluation sets for 109 languages, such as Latin and Japanese.

Table 6 provides a detailed evaluation of performance across multiple languages and text types. In the Multilingual Metrics (Table 6a), the model demonstrates outstanding accuracy with the lowest edit distances in all evaluated scripts: Arabic(0.122), Korean(0.052), Tamil(0.043), Greek(0.135), Thai(0.081), Telugu (0.114), Devanagari (0.097), Cyrillic (0.109), Latin (0.013), and Japanese (0.096), indicating superior capability in handling diverse languages. Similarly, in the Text Type Metrics (Table 6b), it excels in various text types, achieving the lowest error rates in categories like Handwritten CN (0.089), Handwritten EN (0.042), Printed CN (0.035), Printed EN (0.016), Traditional Chinese (0.048), Ancient Texts(0.198), General Scene (0.067), Pinyin (0.113), Rare Characters (0.001), Vertical Text (0.005), Single Characters (0.027), Emoji (0.057), and Art Font (0.165). These impressive results underscore the model's robust performance and versatility, establishing it as the leading OCR solution in this benchmark comparison.

Methods		Edit Distance ↓									
	Arabic	Korean	Tamil	Greek	Thai	Telugu	Devanagari	Cyrillic	Latin	Japanese	
Qwen2.5-VL-72B [24]	0.405	0.056	0.389	0.165	0.194	0.758	0.164	0.220	0.021	0.181	
Dolphin [3]	0.682	0.699	0.912	0.691	0.709	0.832	0.818	0.549	0.037	0.309	
MonkeyOCR-pro-3B [1]	0.601	0.182	0.921	0.449	0.876	0.909	0.896	0.387	0.036	0.262	
MinerU2.5 [2]	0.978	0.917	0.957	0.661	0.880	0.937	0.915	0.832	0.063	0.588	
PaddleOCR-VL	0.122	0.052	0.043	0.135	0.081	0.011	0.097	0.109	0.013	0.086	

(a) Multilingual Metrics.

Methods						Edit	Distance	\downarrow					
Methous	Hand- written CN	Hand- written EN	Printed CN	Printed EN	Trad. Chinese	Ancient Texts	General Scene	Pinyin	Rare Char.	Vertical Text	Single Char.	Emoji	Art Font
Dolphin [3]	0.236	0.145	0.074	0.025	0.095	0.218	0.113	0.183	0.092	0.190	0.202	0.225	0.230
MonkeyOCR-pro-3B [1]	0.253	0.071	0.048	0.023	0.295	0.529	0.144	0.165	0.063	0.086	0.110	0.184	0.263
Qwen2.5-VL-72B [24]	0.188	0.047	0.037	0.018	0.100	0.387	0.122	0.186	0.034	0.090	0.041	0.134	0.220
MinerU2.5 [2]	0.370	0.088	0.041	0.023	0.232	0.950	0.179	0.256	0.048	0.962	0.097	0.174	0.337
PaddleOCR-VL	0.089	0.042	0.035	0.016	0.048	0.198	0.067	0.113	0.001	0.005	0.027	0.057	0.165

(b) Text Type Metrics.

Table 6 | Comparison of In-house-OCR Edit Distance Performance.

Ocean-OCR-Handwritten: This is a line and paragraph levels handwritten evaluation dataset designed for comprehensive handwriting recognition assessment. It contains 400 samples, evenly divided into four subsets of 100 images each. The dataset covers both real and synthetic

handwriting in Chinese and English. Real samples are collected from established handwriting datasets such as CASIA-HWDB [29], GNHK [59], and BRUSH [60], while synthetic samples are generated to simulate diverse writing styles, character densities, and layouts. The benchmark aims to provide balanced and fine-grained evaluation for handwritten text recognition across different scripts and writing conditions.

Table 7 presents a comparison of OCR performance for handwritten English and Chinese text on the Ocean-OCR-Bench. Our model demonstrates superior performance across all metrics in both languages. For English, it achieves the best edit distance of 0.118 and excels in F1-score, Precision, Recall, BLEU, and METEOR, establishing itself as the leading model. In Chinese, PaddleOCR-VL sets a benchmark with an edit distance of 0.034 and leads in all other metrics, showcasing its outstanding precision and reliability.

Methods	Edit Di	stance ↓	F1-sc	ore ↑	Preci	sion↑	Rec	all↑	BL	EU↑	METI	EOR↑
Methods	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH
InternVL2.5-4B [57]	0.197	0.240	0.661	0.741	0.674	0.754	0.655	0.734	0.406	0.473	0.652	0.687
MiniCPM-V2.6-8B [61]	0.147	0.175	0.727	0.810	0.747	0.811	0.714	0.812	0.443	0.583	0.727	0.774
Qwen2-VL-7B [62]	0.127	0.113	0.760	0.881	0.773	0.884	0.754	0.884	0.490	0.666	0.756	0.859
GOT [21]	0.616	0.402	0.283	0.568	0.309	0.618	0.273	0.544	0.151	0.295	0.255	0.492
PaddleOCR [10]	0.418	0.325	0.237	0.664	0.232	0.646	0.263	0.700	0.069	0.431	0.236	0.648
TextIn	0.358	0.180	0.362	0.840	0.368	0.869	0.362	0.822	0.098	0.567	0.337	0.751
Ocean-OCR [63]	0.145	0.106	0.774	0.885	0.780	0.912	0.782	0.862	0.532	0.736	0.772	0.885
MinerU2.5 [2]	0.238	0.356	0.558	0.619	0.547	0.623	0.574	0.622	0.344	0.489	0.553	0.601
PaddleOCR-VL	0.118	0.034	0.750	0.957	0.748	0.959	0.753	0.957	0.551	0.856	0.787	0.936

Table 7 | Comparison of performance on English(EN) and Chinese(ZH) OCR for handwritten recognition on Ocean-OCR-Bench. Results are reported by Ocean-OCR [63] unless MinerU2.5 and Ours.

4.2.2. Table Recognition.

For table recognition, we utilize two benchmarks to validate the effectiveness of PaddleOCR-VL-0.9B based on TEDS [41] and Edit Distance.

OmniDocBench-Table-block: To evaluate the table recognition performance of PaddleOCR-VL, we crop 512 tables from OmniDocBench v1.5 datasets.

As shown in Table 8, our PaddleOCR-VL leads in the OmniDocBench-Table-block benchmark, surpassing all competitors. It achieves a top overall TEDS of 0.9195, reflecting high accuracy in capturing table structure and content. Its structural TEDS of 0.9543 highlights its ability to parse complex structures, while the lowest Overall Edit Distance of 0.0561 indicates minimal recognition errors. These results confirm PaddleOCR-VL's superior performance and establish it as the benchmark for accurate table recognition.

Methods	Overall TEDS↑	Structural TEDS↑	Overall Edit Dist↓
MinerU2-VLM [14]	0.9002	0.9369	0.0734
Seed1.6	0.9079	0.9489	0.0652
dots.ocr [52]	0.8194	0.8442	0.1508
MinerU2.5 [2]	0.9005	0.9539	0.0693
PaddleOCR-VL	0.9195	0.9543	0.0561

Table 8 | Comparison of OmniDocBench-Table-block Performance

In-house-Table: Our self-built evaluation set contains diverse array of table images with comprehensive annotations and type classifications. It includes 20 different table types such as Chinese, English, mixed Chinese-English, and tables with various characteristics like full, partial, or no borders. The collection also covers tables with formulas, dense data, book/manual formats, lists, academic papers, merged cells, as well as low-quality, watermarked, registration forms, statistical forms, research reports, financial reports, images, invoices, and handwritten tables, among others.

Table 9 provides a comparison of different methods on the In-house-Table task, highlighting their performance across various metrics. We achieves the highest scores in Overall TEDS (0.8699), Structural TEDS (0.9066), Overall Edit Distance (0.9066) and Structural Edit Distance (0.9339). These results underscore PaddleOCR-VL's effectiveness and reliability in table recognition tasks.

Methods	Overall TEDS↑	Structural TEDS↑	Overall Edit Dist↑	Structural Edit Dist↑
MinerU2-VLM [14]	0.8286	0.8730	0.8757	0.9088
MonkeyOCR [1]	0.7396	0.7824	0.8174	0.8537
Nanonets-OCR-s [51]	0.7824	0.8190	0.8377	0.8692
OCRFlux-3B [49]	0.7741	0.8071	0.8238	0.8617
Qwen2.5-VL-3B [24]	0.7398	0.7765	0.8132	0.8701
Qwen2.5-VL-7B [24]	0.7549	0.7926	0.8251	0.8819
Qwen2.5-VL-72B [24]	0.7762	0.8361	0.843	0.8987
dots.ocr [52]	0.7547	0.7914	0.8047	0.8361
MinerU2.5 [2]	0.8469	0.8955	0.8896	0.9239
PaddleOCR-VL	0.8699	0.9066	0.9066	0.9339

Table 9 | Comparison of In-house-Table Performance

4.2.3. Formula Recognition.

For formula recognition, we validate the effectiveness our model based on the Character Detection Matching (CDM) [64] metric on OmniDocBench-Formula-block and In-house-Formula datasets.

OmniDocBench-Formula-block Using the formula bounding boxes from OmniDocBench v1.5, 1050 formula sub-images were cropped. This step was taken to minimize the influence of layout detection on formula recognition. As shown in Table 10, the model achieved state-of-the-art CDM score of 0.9453.

Methods	Overall CDM ↑	EN CDM ↑	ZH CDM ↑
dots.ocr [52]	0.4641	0.4868	0.4414
MinerU2-VLM [14]	0.8286	0.9616	0.6956
MonkeyOCR-pro-1.2B [1]	0.8531	0.9642	0.7419
MonkeyOCR-3B [1]	0.8621	0.9718	0.7524
Qwen2.5-VL-72B [24]	0.8747	0.9574	0.7920
MinerU2.5 [2]	0.9187	0.9751	0.8623
PaddleOCR-VL	0.9453	0.9677	0.9228

Table 10 | Comparison of OmniDocBench v1.5 Formula-block Performance. Due to dots.ocr [52] easily recognizing cropped formulas as images, the score is relatively low.

In-house-Formula: The self-constructed formula evaluation set contains 34,816 samples, covering common formula recognition scenarios such as academic papers, mathematics books, and primary and secondary school exam papers. Among them, there are 498 Chinese formulas and 34,318 English formulas. As shown in Table 11, our model obtains the best performance of

0.9882 CDM score on the In-house-Formula dataset. These results collectively demonstrate the powerful recognition capability of PaddleOCR-VL in real-world complex formula scenarios.

Methods	Overall CDM ↑	EN CDM ↑	ZH CDM ↑
dots.ocr [52]	0.6737	0.8066	0.5408
MinerU2-VLM [14]	0.9237	0.9764	0.8709
MonkeyOCR-pro-1.2B [1]	0.9537	0.9656	0.9417
MonkeyOCR-3B [1]	0.9566	0.9761	0.9371
Qwen2.5-VL-72B [24]	0.9412	0.9519	0.9304
MinerU2.5 [2]	0.9770	0.9832	0.9708
PaddleOCR-VL	0.9882	0.9914	0.9849

Table 11 | Comparison of In-house-Formula Performance. Due to dots.ocr [52] easily recognizing cropped formulas as images, the score is relatively low.

4.2.4. Chart Recognition.

For chart recognition, considering the limitations in dataset size, the imbalanced distribution of chart categories, and the poor annotation quality of publicly available test sets, we only utilize a in-house benchmark to validate the effectiveness of PaddleOCR-VL-0.9B based on the RMS-F1 [42] score metric. As shown in Table 12, the proposed PaddleOCR-VL not only outperforms expert OCR VLMs but also surpasses some 72B-level multimodal language models.

In-house-Chart: This in-house chart recognition evaluation set comprises 1,801 samples, all of which have underwent a rigorous manual review to ensure annotation correctness. The evaluation set is broadly categorized into 11 chart categories, including bar-line hybrid, pie, 100% stacked bar, area, bar, bubble, histogram, line, scatterplot, stacked area, and stacked bar. Of these samples, 851 are in English and 950 are in Chinese. Prior to evaluation, both the predicted data table and the ground truth data table are normalized to a uniform markdown format to eliminate expression ambiguities.

Methods	RMS-F1 ↑			
Methous	Overall	EN	ZH	
TinyChart [65]	0.2159	0.4726	0.0876	
GOT [21]	0.3160	0.1100	0.4190	
OneChart [66]	0.3716	0.1384	0.4882	
Qwen2.5-VL-3B [24]	0.5942	0.5619	0.6103	
Qwen2.5-VL-7B [24]	0.6821	0.5876	0.7293	
Qwen2.5-VL-72B [24]	0.7300	0.6972	0.7464	
PP-StructureV3 [10]	0.8060	0.7963	0.8109	
PaddleOCR-VL	0.8440	0.8222	0.8549	

Table 12 | Comparison of In-house-Chart Performance

4.3. Inference Performance

To improve the inference performance of PaddleOCR-VL, we introduce multi-threading asynchronous execution into the inference workflow. The process is divided into three main stages—data loading (e.g., rendering PDF pages as images), layout model processing, and VLM inference—each running in a separate thread. Data is transferred between adjacent stages via queues, enabling concurrent execution for higher efficiency. In particular, for VLM inference, batch processing is only triggered when either the number of items in the queue reaches a predefined threshold or the waiting time for queued data exceeds a specified limit. This design allows blocks across different pages to be aggregated and processed together, thereby

maximizing parallelism, especially when handling large volumes of files. We further deploy PaddleOCR-VL-0.9B on high-throughput inference and serving engines [67, 68, 69], tuning parameters like max-num-batched-tokens and gpu-memory-utilization to balance inference throughput with GPU memory consumption.

We measured the end-to-end inference speed and GPU usage on the OmniDocBench v1.0 dataset, processing PDF files in batches of 512 on a single NVIDIA A100 GPU. By "end-to-end", we mean that the inference time was measured from providing the PDF file path as input to the complete generation of the Markdown text. For MonkeyOCR, dots.ocr, and MinerU, inference was run with the vLLM backend and the default configuration (including the KV cache settings). The generated Markdown text was tokenized with the "cl100k_base" tokenizer to compute the number of output tokens. For dots.ocr specifically, 200 threads were used for concurrent page processing, and the Base64-encoded image content in the produced Markdown text was replaced with a dummy path (UUID-based, prefixed with "images/" and suffixed with ".png") to ensure a reasonable token count.

Table 13 provides a comprehensive comparison of inference efficiency across different methods. The proposed PaddleOCR-VL demonstrates clear and consistent advantages in both processing speed and memory efficiency. When deployed with the vLLM backend, it achieves 15.8% higher page throughput and 14.2% higher token throughput than the leading baseline, MinerU2.5, establishing itself as the most efficient solution overall. In addition, PaddleOCR-VL achieves notable memory savings, using roughly 40% less GPU memory than dots.ocr while sustaining significantly faster processing. These results collectively confirm that PaddleOCR-VL attains state-of-the-art inference efficiency through a balanced optimization of speed and memory usage, making it highly suitable for real-world, high-throughput document understanding scenarios.

Methods	Total Time (s)↓	Pages/s↑	Tokens/s↑	Avg. VRAM Usage (GB)↓
MonkeyOCR-pro-1.2B [†] [1]	1456.4	0.6730	1120.3	75.5
dots.ocr [†] [52]	2784.6	0.3522	532.9	78.5
MinerU2.5 [†] [2]	927.3	1.0574	1647.9	41.9
PaddleOCR-VL [†]	800.9	1.2241	1881.2	<u>43.7</u>
PaddleOCR-VL [‡]	<u>917.6</u>	1.0684	1641.5	49.8

Table 13 | End-to-End Inference Performance Comparison. † denotes the vLLM backend, and ‡ denotes the SGLang backend.

5. Conclusion

This report introduces PaddleOCR-VL, an advanced and efficient model for document parsing that excels at both element-level and page-level recognition. Its core componets, PaddleOCR-VL-0.9B, built with a NaViT-style visual encoder and ERNIE-4.5-0.3B language model, it accurately recognizes complex elements such as text, tables, formulas, and charts in over 100 languages. PaddleOCR-VL achieves fast inference and low resource consumption, making it practical for real-world deployment. It outperforms existing pipeline solutions on many benchmarks and effectively handles challenging content including handwriting and historical documents, as well as converting chart visuals into structured data. Its broad multilingual support and strong performance have the potential to advance the application and development of multimodal document processing technologies, bringing innovation to automated analysis and information retrieval. This will significantly enhance the performance and stability of RAG systems, making information extraction from complex documents more efficient, thereby providing more reliable data support for future AI applications.

References

- [1] Zhang Liu, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, and Xiang Bai. Monkeyocr: Document parsing with a structure-recognition-relation triplet paradigm. arXiv preprint arXiv:2506.05218, 2025.
- [2] Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, et al. Mineru2. 5: A decoupled vision-language model for efficient high-resolution document parsing. arXiv preprint arXiv:2509.22186, 2025.
- [3] Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binghong Wu, Qi Liu, Chunhui Lin, et al. Dolphin: Document image parsing via heterogeneous anchor prompting. arXiv preprint arXiv:2505.14059, 2025.
- [4] Yuan Liu, Zhongyin Zhao, Le Tian, Haicheng Wang, Xubing Ye, Yangxiu You, Zilin Yu, Chuhan Wu, Xiao Zhou, Yang Yu, et al. Points-reader: Distillation-free adaptation of vision-language models for document conversion. arXiv preprint arXiv:2509.01215, 2025.
- [5] Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.
- [6] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.
- [7] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [8] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. <u>Advances in neural information processing systems</u>, 33:9459–9474, 2020.
- [9] Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu, Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content extraction. arXiv preprint arXiv:2409.18839, 2024.
- [10] Cheng Cui, Ting Sun, Manhui Lin, Tingquan Gao, Yubo Zhang, Jiaxuan Liu, Xueqing Wang, Zelun Zhang, Changda Zhou, Hongen Liu, et al. Paddleocr 3.0 technical report. arXiv preprint arXiv:2507.05595, 2025.
- [11] Docling Team. Docling. https://github.com/docling-project/docling, 2024. Accessed: 2025-06-23.
- [12] Jake Poznanski, Jon Borchardt, Jason Dunkelberger, Regan Huff, Daniel Lin, Aman Rangapur, Christopher Wilhelm, Kyle Lo, and Luca Soldaini. olmocr: Unlocking trillions of tokens in pdfs with vision language models. arXiv preprint arXiv:2502.18443, 2025.
- [13] Ahmed Nassar, Andres Marafioti, Matteo Omenetti, Maksym Lysak, Nikolaos Livathinos, Christoph Auer, Lucas Morin, Rafael Teixeira de Lima, Yusik Kim, A Said Gurbuz, et al. Smoldocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion. arXiv preprint arXiv:2503.11576, 2025.

- [14] opendatalab. Mineru2.0-2505-0.9b. https://huggingface.co/opendatalab/Miner U2.0-2505-0.9B, 2025.
- [15] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n'pack: Navit, a vision transformer for any aspect ratio and resolution. Advances in Neural Information Processing Systems, 36:2252–2274, 2023.
- [16] Linke Ouyang, Yuan Qu, Hongbin Zhou, Jiawei Zhu, Rui Zhang, Qunshu Lin, Bin Wang, Zhiyuan Zhao, Man Jiang, Xiaomeng Zhao, et al. Omnidocbench: Benchmarking diverse pdf document parsing with comprehensive annotations. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 24838–24848, 2025.
- [17] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen. Detrs beat yolos on real-time object detection. In <u>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</u>, pages 16965–16974, 2024.
- [18] Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen, and Xuguang Lan. Relation detr: Exploring explicit position relation prior for object detection. In European Conference on Computer Vision, pages 89–105. Springer, 2024.
- [19] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and Furu Wei. Layoutreader: Pre-training of text and layout for reading order detection. arXiv preprint arXiv:2108.11591, 2021.
- [20] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural information processing systems, 36:34892–34916, 2023.
- [21] Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, et al. General ocr theory: Towards ocr-2.0 via a unified end-to-end model. arXiv preprint arXiv:2409.01704, 2024.
- [22] Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, et al. Kwai keye-vl technical report. <u>arXiv</u> preprint arXiv:2507.01949, 2025.
- [23] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). <u>arXiv preprint</u> arXiv:1606.08415, 2016.
- [24] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv:2502.13923, 2025.
- [25] Ting Sun, Cheng Cui, Yuning Du, and Yi Liu. Pp-doclayout: A unified document layout detection model to accelerate large-scale data construction. arXiv:preprint arXiv:2503.17213, 2025.
- [26] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in neural information processing systems, 31, 2018.
- [27] PaddlePaddle Authors. Erniekit. https://github.com/PaddlePaddle/ERNIE, 2025.
- [28] Maksym Lysak, Ahmed Nassar, Nikolaos Livathinos, Christoph Auer, and Peter Staar. Optimized table tokenization for table structure recognition. In <u>International Conference</u> on Document Analysis and Recognition, pages 37–50. Springer, 2023.

- [29] Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. Casia online and offline chinese handwriting databases. In <u>2011</u> international conference on document analysis and recognition, pages 37–41. IEEE, <u>2011</u>.
- [30] Bin Wang, Zhuangcheng Gu, Guang Liang, Chao Xu, Bo Zhang, Botian Shi, and Conghui He. Unimernet: A universal network for real-world mathematical expression recognition. arXiv preprint arXiv:2404.15254, 2024.
- [31] Philippe Gervais, Anastasiia Fadeeva, and Andrii Maksai. Mathwriting: A dataset for handwritten mathematical expression recognition. In <u>Proceedings of the 31st ACM SIGKDD</u> Conference on Knowledge Discovery and Data Mining V. 2, pages 5459–5469, 2025.
- [32] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. <u>arXiv:2203.10244</u>, 2022.
- [33] Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over scientific plots. In Proceedings of the ieee/cvf winter conference on applications of computer vision, pages 1527–1536, 2020.
- [34] Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque, and Shafiq Joty. Chart-to-text: A large-scale benchmark for chart summarization. arXiv preprint arXiv:2203.06486, 2022.
- [35] Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visualizations via question answering. In <u>Proceedings of the IEEE conference on computer vision and pattern recognition</u>, pages 5648–5656, 2018.
- [36] Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. Unichart: A universal vision-language pretrained model for chart comprehension and reasoning. arXiv preprint arXiv:2305.14761, 2023.
- [37] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, and Michael Stonebraker. Beagle: Automated extraction and interpretation of visualizations from the web. In Proceedings of the 2018 CHI conference on human factors in computing systems, pages 1–8, 2018.
- [38] Kenny Davila, Bhargava Urala Kota, Srirangaraj Setlur, Venu Govindaraju, Christopher Tensmeyer, Sumit Shekhar, and Ritwick Chaudhry. Icdar 2019 competition on harvesting raw tables from infographics (chart-infographics). In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1594–1599. IEEE, 2019.
- [39] Benny J Tang, Angie Boggust, and Arvind Satyanarayan. Vistext: A benchmark for semantically rich chart captioning. arXiv preprint arXiv:2307.05356, 2023.
- [40] Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin. Chartocr: Data extraction from charts images via a deep hybrid framework. In <u>Proceedings of the IEEE/CVF winter</u> conference on applications of computer vision, pages 1917–1925, 2021.
- [41] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: data, model, and evaluation, 2020.

- [42] Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, and Yasemin Altun. Deplot: One-shot visual language reasoning by plot-to-table translation. arXiv preprint arXiv:2212.10505, 2022.
- [43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In <u>Proceedings of the 40th annual meeting of the Association for Computational Linguistics</u>, pages 311–318, 2002.
- [44] VI Levenshtein. Binary coors capable or 'correcting deletions, insertions, and reversals. In Soviet physics-doklady, volume 10, 1966.
- [45] Vik Paruchuri. Marker. https://github.com/datalab-to/marker, 2025. Accessed: 2025-09-25.
- [46] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.
- [47] Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.
- [48] Google DeepMind. Gemini 2.5. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/, 2025.
- [49] chatdoc com. Ocrflux. https://github.com/chatdoc-com/OCRFlux, 2025. Accessed:2025-09-25.
- [50] Mistral AI Team. Mistral-ocr. https://mistral.ai/news/mistral-ocr?utm_sourc e=ai-bot.cn, 2025.
- [51] Souvik Mandal, Ashish Talewar, Paras Ahuja, and Prathamesh Juvatkar. Nanonets-ocr-s: A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging, 2025.
- [52] rednote-hilab. dots.ocr: Multilingual document layout parsing in a single vision-language model, 2025.
- [53] Filimoa. open-parse. https://github.com/Filimoa/open-parse, 2024. Accessed: 2025-06-23.
- [54] Unstructured-IO. unstructured. https://github.com/Unstructured-IO/unstructured, 2022. Accessed: 2025-06-23.
- [55] breezedeus. Pix2text. https://github.com/breezedeus/Pix2Text, 2022. Accessed: 2025-06-23.
- [56] Mathpix. Mathpix snip: Convert images and pdfs to latex, docx, and more. https://mathpix.com/, 2025.

- [57] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 24185–24198, 2024.
- [58] Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical understanding for academic documents. arXiv preprint arXiv:2308.13418, 2023.
- [59] Alex WC Lee, Jonathan Chung, and Marco Lee. Gnhk: a dataset for english handwriting in the wild. In <u>International Conference on Document Analysis and Recognition</u>, pages 399–412. Springer, 2021.
- [60] Atsunobu Kotani, Stefanie Tellex, and James Tompkin. Generating handwriting via decoupled style descriptors. In <u>European Conference on Computer Vision</u>, pages 764–780. Springer, 2020.
- [61] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint arXiv:2408.01800, 2024.
- [62] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.
- [63] Song Chen, Xinyu Guo, Yadong Li, Tao Zhang, Mingan Lin, Dongdong Kuang, Youwei Zhang, Lingfeng Ming, Fengyu Zhang, Yuran Wang, et al. Ocean-ocr: Towards general ocr application via a vision-language model. arXiv preprint arXiv:2501.15558, 2025.
- [64] Bin Wang, Fan Wu, Linke Ouyang, Zhuangcheng Gu, Rui Zhang, Renqiu Xia, Botian Shi, Bo Zhang, and Conghui He. Image over text: Transforming formula recognition evaluation with character detection matching. In 2025-IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 19681–19690, 2025.
- [65] Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang. Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts learning. arXiv preprint arXiv:2404.16635, 2024.
- [66] Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong Liu, Zheng Ge, Liang Zhao, Jianjian Sun, Chunrui Han, and Xiangyu Zhang. Onechart: Purify the chart structural extraction via one auxiliary token. In <u>Proceedings of the 32nd ACM International Conference on Multimedia</u>, pages 147–155, 2024.
- [67] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In <u>Proceedings of the 29th symposium on operating systems principles</u>, pages 611–626, 2023.
- [68] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language model programs. <u>Advances in neural information processing systems</u>, 37:62557–62583, 2024.
- [69] PaddlePaddle Authors. Fastdeploy. https://github.com/PaddlePaddle/FastDeploy, 2025.

- [70] Qian Chen, Xianyin Zhang, Lifan Guo, Feng Chen, and Chi Zhang. Dianjin-ocr-r1: Enhancing ocr capabilities via a reasoning-and-tool interleaved vision-language model. <u>arXiv</u> preprint arXiv:2508.13238, 2025.
- [71] Lukas Blecher. pix2tex latex ocr. https://github.com/lukas-blecher/LaTeX-OCR, 2022. Accessed: 2025-06-23.
- [72] Harold Mouchere, Christian Viard-Gaudin, Richard Zanibbi, and Utpal Garain. Icfhr 2014 competition on recognition of on-line handwritten mathematical expressions (crohme 2014). In 2014 14th international conference on frontiers in handwriting recognition, pages 791–796. IEEE, 2014.
- [73] Harold Mouchère, Christian Viard-Gaudin, Richard Zanibbi, and Utpal Garain. Icfhr2016 crohme: Competition on recognition of online handwritten mathematical expressions. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pages 607–612. IEEE, 2016.
- [74] Mahshad Mahdavi, Richard Zanibbi, Harold Mouchere, Christian Viard-Gaudin, and Utpal Garain. Icdar 2019 crohme+ tfd: Competition on recognition of handwritten mathematical expressions and typeset formula detection. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1533–1538. IEEE, 2019.
- [75] Ye Yuan, Xiao Liu, Wondimu Dikubab, Hui Liu, Zhilong Ji, Zhongqin Wu, and Xiang Bai. Syntax-aware network for handwritten mathematical expression recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4553–4562, 2022.
- [76] Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Appendix

A. Training Dataset Details

This two-stage approach offers unique advantages in terms of data collection, as obtaining isolated element imagesalong with their annotations is more feasible than collecting complete document pages containing different elements. In the following sections, we will elaborate on the construction of multimodal model training data for text, tables, formulas, and charts.

A.1. Text

We have curated a large-scale dataset comprising 20 Million High-Quality Image-Text Pairs. As shown in Figure A1, the dataset generation follows a rigorous multi-stage pipeline which primarily involves:

Figure A1 | The construction method and characteristics of the text training data for PaddleOCR-VL-0.9B.

- 1. Automatic Data Annotation: We design an automatic annotation pipeline that integrates lightweight document-structure models with large multimodal language models. Specifically, PP-StructureV3 is employed as an expert model to perform layout analysis and text recognition, generating pseudo labels that are converted into prompts for multimodal models such as ERNIE-4.5-VL and Qwen2.5-VL to refine. Finally, the refined labels are aggregated and randomly merged at multiple granularities to produce 20 million high-quality image—text training samples.
- 2. **High-quality OCR Data Synthesis:** During data distillation, low label quality in challenging scenarios like messy handwriting and dense blurry text was addressed by expanding the dataset through synthetic generation. Utilizing diverse CSS styles, over 200 fonts, and various corpora, we rendered a large amount of images, thereby enhancing the model's capabilities in these difficult scenarios.

Ultimately, the data is meticulously annotated at three distinct hierarchical levels: text lines, text blocks, and text pages. With extensive language coverage of 109 languages, including major global ones like Chinese, English, French, and Hindi. It includes diverse scenes including Academic Papers, Newspapers, Handwritten texts, Ancient books, Id cards, tickets, seals, etc. Additionally, the dataset addresses compatibility with a variety of writing systems and text styles, covering Printing, Handwriting, Scanned text, Artistic Fonts, etc.

A.2. Table

As shown in Figure A2, we constructed a large-scale dataset of over 5 million high-quality image-table pairs. Our dataset construction employs three key strategies: automatic data annotation, potential annotation mining, and high-quality data synthesis. For coding efficiency, we adopt OTSL [28] as the model's target format instead of conventional HTML. The main dataset construction process is as follows:

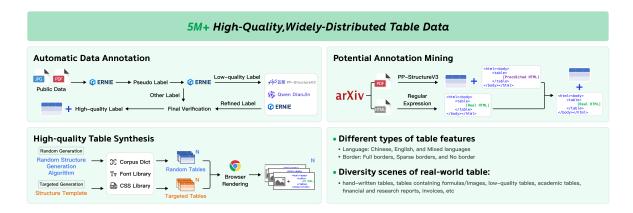


Figure A2 | The construction method and characteristics of the table training data for PaddleOCR-VL-0.9B.

1. **Automatic Data Annotation:** To enhance the performance of PaddleOCR-VL in table recognition, we built a large-scale, diverse dataset covering various languages, border styles, and table types. Tables are first located using PP-StructureV3 [10]. For unlabeled images, we employed a multi-stage annotation pipeline: ERNIE-4.5-VL [5] first generates pseudo-labels, which are then validated by a ERNIE-4.5-VL-28B-A3B [5] as discriminative model. Rejected annotations are refined using DianJin-OCR-R1 [70] (for tools, we use ERNIE-4.5-VL and PP-StructureV3 [10]). Finally, all annotations undergo rigorous rule-based verification, including n-gram analysis and HTML validation, to ensure only high-quality samples are used for training.

2. Potential Annotation Mining:

For public data with potential annotations (e.g., from arXiv), we extract tables and their corresponding official-supported HTML source code. We then employ a mechanism combining regular expression matching with contextual and sequential alignment to construct accurate table-HTML pairs. The extracted HTML subsequently undergoes rule-based filtering, yielding high-quality data samples ready for model training.

3. High-quality Table Synthesis:

To overcome data imbalance and high annotation costs, we introduce an innovative high-quality table synthesis tool which constitutes the cornerstone of our table data collection pipeline. This tool enables both randomized synthesis for comprehensive data supplement and targeted synthesis to enhance recognition of specific table categories. Specifically, we first leverage LLMs to gather a diverse and extensive corpus. Then, our tool generates table training pairs through randomized configurations of structures, fonts, CSS styles, and textual content, while also supporting customized synthesis by specifying particular parameters to accurately simulate specialized table types. With a synthesis speed of 10,000 samples per hour, our tool has produced over 5,500,000 training instances, substantially enhancing our model's generalization capability and comprehensive performance in table

recognition.

Through the aforementioned data construction strategies, we build a comprehensive table dataset encompassing diverse table categories and recognition scenarios, thereby providing robust support for training our model in the table recognition task.

A.3. Formula

As shown in Figure A3, this dataset was developed using a range of strategies, including source code rendering, automatic data annotation, targeted synthesis of long-tail data, and public data collection. It encompasses a variety of formula scenarios, such as educational supplementary materials, test papers for primary and secondary schools, mathematical papers, PowerPoint courseware, university theses, financial research reports, and handwritten mathematical notes. The dataset features four types of formulas: Simple Printed Expressions, Complex Printed Expressions, Screen-Captured Expressions, and Handwritten Expressions, available in both Chinese and English. The main process for constructing the dataset is as follows:

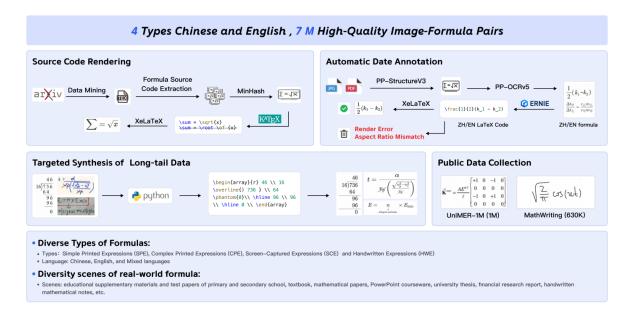


Figure A3 | The construction method and characteristics of the formula training data for PaddleOCR-VL-0.9B.

- 1. **Source Code Rendering:** To enhance the model's adaptability to a wide variety of unusual formula structures, a large amount of paper source code was scraped from arXiv, and LaTeX code for the formulas was extracted using regular expressions. Then, MinHash was used to remove duplicate and highly similar formula source codes, and KaTeX was employed to normalize the formula source codes, thereby reducing their ambiguity. Finally, the formulas were re-rendered into images using a formula rendering engine.
- 2. **Automatic Data Annotation:** For real-world formula data from exam papers, educational materials, and handwritten notes, the process begins with the use of the layout analysis method PP-StructureV3 [10] to identify the bounding boxes for formulas. Based on these bounding boxes, formula regions are cropped from the images. Subsequently, large multimodal language models, such as ERNIE-4.5-VL-28B-A3B [5], are employed to

generate the LaTeX source code for these formulas. Given the rarity of Chinese formulas in real-world scenarios—where approximately 1 out of 100 formulas contains Chinese characters—PP-OCRv5 [10] is utilized to recognize characters within the cropped regions, enabling targeted optimization when Chinese characters are detected. Due to the complex and diverse nature of real-world formulas, recognition errors may occur with existing large models. To address this, a LaTeX rendering engine is used to filter the formulas generated by these models. Specifically, image-formula pairs that cannot be successfully rendered by xelatex are discarded. For those that render successfully, a more in-depth screening is conducted by comparing metrics such as the aspect ratio between the recognized image and the rendered image.

- 3. **Targeted Synthesis of Long-tail Data:** For certain long-tail formula structures, such as elementary school vertical calculations, formulas with strikethroughs, and handwritten formulas with explanatory arrows, existing multimodal large models struggle to accurately recognize them due to data distribution issues. To address this, LaTeX code is synthetically generated based on rules and inverse rendering is performed using a LaTeX rendering engine, thereby constructing image-formula matching pairs for these long-tail scenarios.
- 4. **Public Data Collection:** In order to enable the model to learn high-quality formula representations, a substantial amount of data has been collected from existing public datasets, including UniMER-1M [30] and MathWriting [31]. Specifically, UniMER-1M is oriented towards real document scenarios and has gathered 1 million formula data from arXiv, Pix2tex [71], CROHME [72, 73, 74], and HME100K [75]. On the other hand, MathWriting is currently the largest handwritten mathematical formula dataset, comprising 230,000 real handwritten formula samples and 400,000 synthetic handwritten formula samples.

A.4. Chart

We constructed a large-scale, bilingual (Chinese and English) dataset of over 0.8 million high-quality image-chart pairs. Our dataset construction employs four key strategies: public data collection and cleaning, automatic data annotation, data synthesis, and targeted long-tail data augmentation. The dataset covers a wide array of chart types from diverse sources, including academic papers, financial reports, and web pages. The main dataset construction process is as follows:

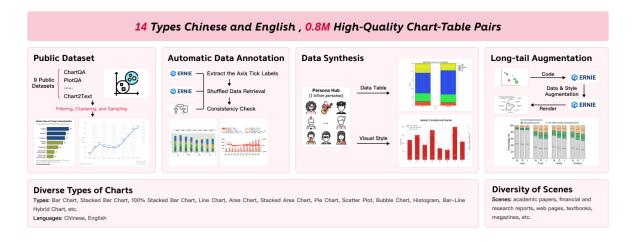


Figure A4 | The construction method and characteristics of the chart training data for PaddleOCR-VL-0.9B.

- 1. **Public Data Collection and Cleaning:** We collected a large number of samples from public datasets, including ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36], Beagle [37], ChartINFO [38], visText [39], and ExcelChart [40]. However, the raw datasets suffered from poor annotation quality and extremely imbalanced data distributions. Thus, a meticulous data cleaning and filtering pipeline was implemented to remove noisy samples and ensure balanced clustering, resulting in a high-quality dataset of 220k samples.
- 2. **Automatic Data Annotation:** To annotate our large collection of unlabeled public and in-house data, we developed a two-stage annotation pipeline based on the Vision Large Language Model ERNIE-4.5-VL [5]. In the first stage, the model extracts tick labels from the x- and y-axes; in the second, random permutations of these labels are used to query corresponding data points, framing annotation as a data retrieval task. A final consistency check ensures that only verified annotations are included in the training set, guaranteeing high reliability.
- 3. **Data Synthesis:** To capture diverse visual styles and enhance model generalization, we designed a three-stage data synthesis pipeline. It begins with a large collection of base data tables, followed by an LLM Persona [76] strategy using ERNIE-X1 [5], which diversifies table content and generates persona-specific rendering code. This enables control over chart aesthetics such as color, font, and layout. Leveraging a billion distinct personas, the pipeline produces highly varied data structures and visual styles, substantially improving PaddleOCR-VL's generalization across real-world charts. For rendering, we employ matplotlib and seaborn.
- 4. **Targeted Long-tail Data Augmentation:** To improve generalization on real-world long-tail samples, we designed a data augmentation pipeline based on seed charts. It first selects long-tail samples by their distinctive visual features, then uses ERNIE-4.5-VL [5] to replicate their rendering code. ERNIE-X1 [5], guided by a specific persona [76], further diversifies the code by altering data tables and visual styles. Executing the modified code produces new augmented charts with corresponding data tables.

Through the four data construction strategies mentioned above, the final chart dataset covers a wide range of application scenarios and a rich variety of chart styles, providing strong support for the training of chart models.

B. Supported Languages

PaddleOCR-VL supports a total of 109 languages. Table 6 in the main text shows the text line recognition accuracy for different languages. Table A1 lists the correspondence between each language category and the specific supported languages.

Language Category	Specific Languages		
Chinese	Chinese		
English	English		
Korean	Korean		
Japanese	Japanese		
Thai	Thai		
Greek	Greek		
Tamil	Tamil		
Telugu	Telugu		
Arabic	Arabic, Persian, Uyghur, Urdu, Pashto, Kurdish, Sindhi, Balochi		
French, German, Afrikaans, Italian, Spanish, Bosnian, Port Czech, Welsh, Danish, Estonian, Irish, Croatian, Uzbek, Hu Serbian (Latin), Indonesian, Occitan, Icelandic, Lithuanian Latin Malay, Dutch, Norwegian, Polish, Slovak, Slovenian, Alb Swedish, Swahili, Tagalog, Turkish, Latin, Azerbaijani, Ki Latvian, Maltese, Pali, Romanian, Vietnamese, Finnish, B Galician, Luxembourgish, Romansh, Catalan, Quech			
Cyrillic	Russian, Belarusian, Ukrainian, Serbian (Cyrillic), Bulgarian, Mongolian, Abkhazian, Adyghe, Kabardian, Avar, Dargin, Ingush, Chechen, Lak, Lezgin, Tabasaran, Kazakh, Kyrgyz, Tajik, Macedonian, Tatar, Chuvash, Bashkir, Malian, Moldovan, Udmurt, Komi, Ossetian, Buryat, Kalmyk, Tuvan, Sakha, Karakalpak		
Devanagari	Hindi, Marathi, Nepali, Bihari, Maithili, Angika, Bhojpuri, Magahi, Santali, Newari, Konkani, Sanskrit, Haryanvi		

Table A1 | Supported Languages

C. Inference Performance on Different Hardware Configurations

We measured the inference performance of PaddleOCR-VL on different hardware configurations, as summarized in Table A2. As observed, PaddleOCR-VL demonstrates stable and efficient inference performance across a wide range of hardware and backend configurations, showing that the system can flexibly adapt to diverse computing environments. Moreover, we are currently integrating the FastDeploy backend, which is expected to further enhance inference efficiency in future releases.

Hardware	Backend	Total Time (s)↓	Pages/s↑	Tokens/s↑	Avg. VRAM Usage (GB)↓
A100	vLLM	800.9	1.2241	1881.2	43.7
	SGLang	917.6	1.0684	1641.5	49.8
A10	vLLM	1238.0	0.7921	1217.2	14.1
	SGLang	1429.9	0.6858	1055.8	20.0
RTX 3060	vLLM	2749.1	0.3568	548.2	11.9
	SGLang	2792.4	0.3513	540.8	11.8
RTX 5070	vLLM	1292.9	0.7584	1165.5	8.9
RTX 4090D	vLLM	845.3	1.1597	1781.8	16.7
	SGLang	951.8	1.0303	1586.1	21.8

Table A2 | End-to-End Inference Performance

D. Real-world Samples

This appendix showcases the parsing and recognition capabilities of our proposed algorithm across a variety of challenging scenarios.

Section D.1 demonstrates the overall document parsing capability of PaddleOCR-VL. Figures A5-A8 are examples of parsing different types of documents in Markdown format.

Figures A9-A11 in section D.2 illustrate the superior ability of PaddleOCR-VL to process pages featuring intricate or challenging layouts.

Figures A12 and A13 in section D.3 demonstrate that PaddleOCR-VL maintains excellent reading order when faced with complex layouts, such as those found in various reports, text-books, newspapers, magazines, and even vertical documents.

Section D.4 highlights the robust text recognition performance of PaddleOCR-VL in challenging cases, including multilingual text, handwriting text, and vertical text, which are presented in Figures A14-A22.

The model's table recognition abilities are demonstrated in section D.5. Figures A23 and A24 showcase its robust handling of a wide array of table formats, including tables from academic papers, tables from financial reports, tables with watermark, tables with image, tables with formulas and photograph of tables.

Figures in section D.6 detail the formula recognition performance. Figure A25 demonstrates the ability to handle various types of english formulas including complex printed expressions, handwritten expressions screen-captured expressions and vertical formula, while Figure A26 focuses on the ability to handle formulas that contain Chinese characters.

In section D.7, PaddleOCR-VL demonstrates impressive chart recognition capabilities, a feature currently lacking in many expert OCR VLMs like MinerU2.5 [14], dots.ocr [52] or MonkeyOCR [1]. Figures A27-A29 showcase our ability to parse various chart types, including pie charts, bar charts, line charts, bar-line hybrid charts and heatmap.

D.1. Comprehensive Document Parsing

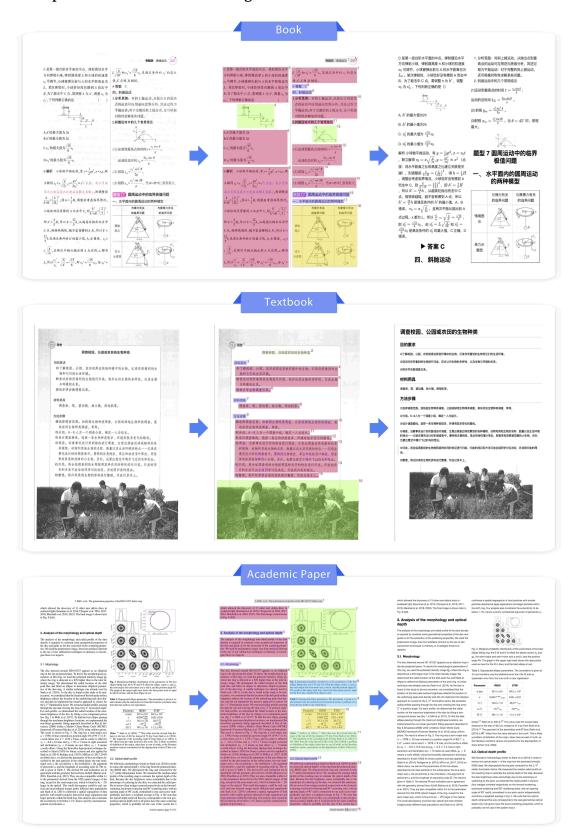


Figure A5 | The Layout and Markdown Output for Book, Textbook and Academic Paper.

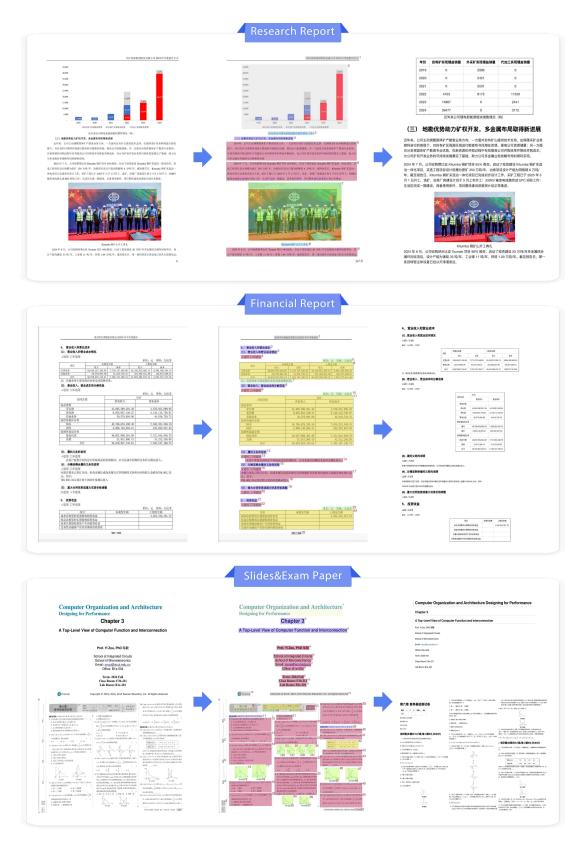


Figure A6 | The Layout and Markdown Output for Research Report(with chart recognition enabled), Financial Report, Slides and Exam Paper.

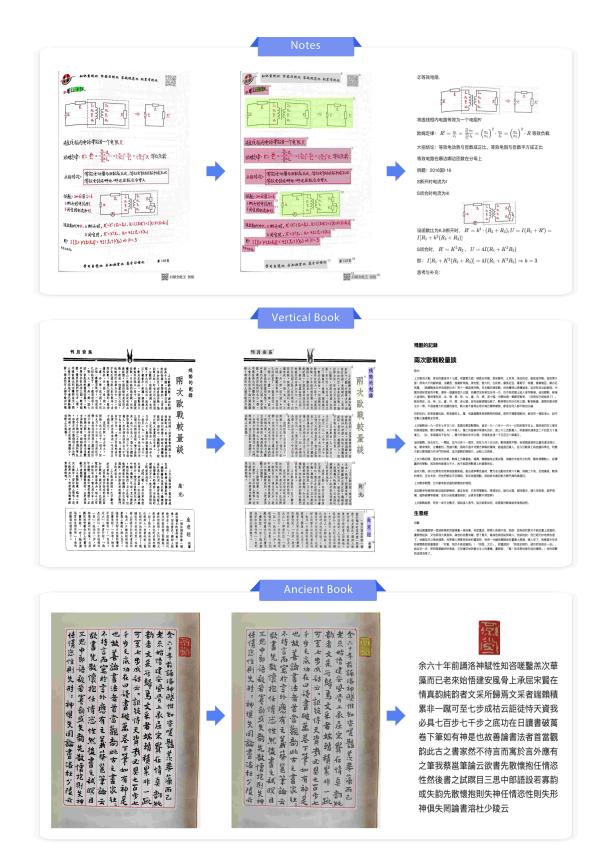


Figure A7 | The Layout and Markdown Output for Notes, Vertical Book and Ancient Book.

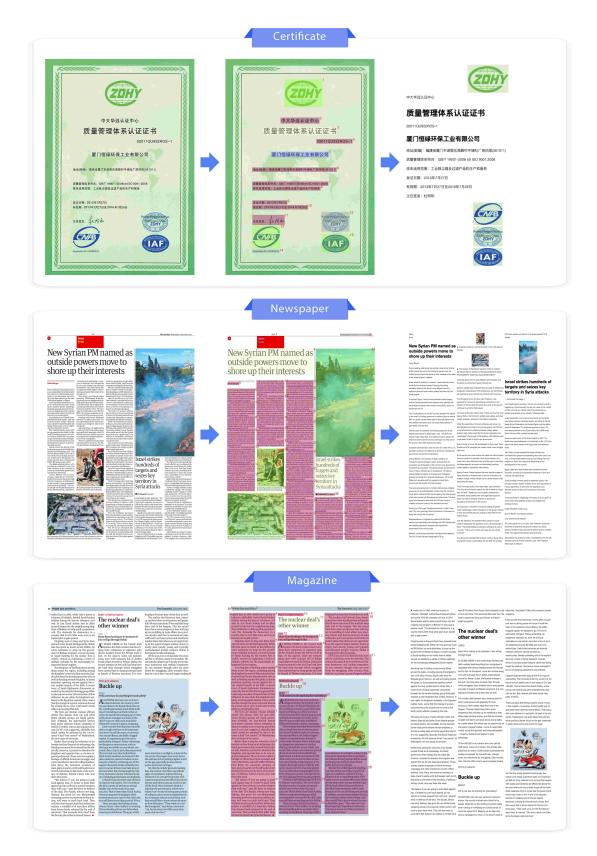


Figure A8 | The Layout and Markdown Output for Certificate, Newspaper and Magazine.

D.2. Layout Detection

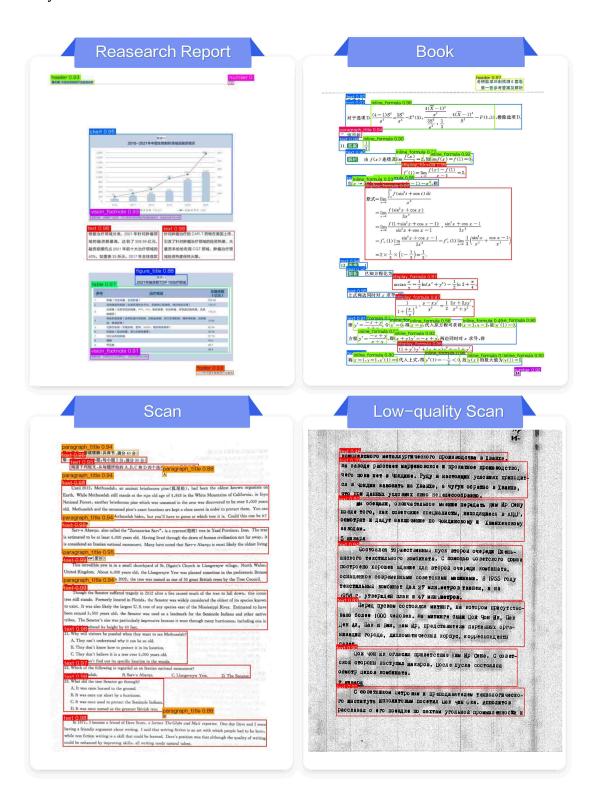


Figure A9 | The Layout Detection results for various types of documents.

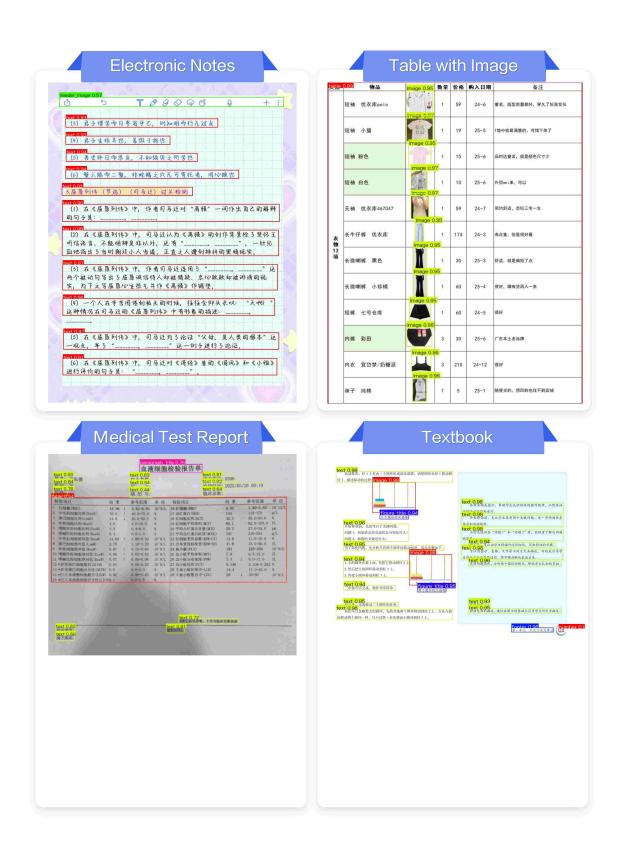


Figure A10 | The Layout Detection results for various types of documents.

Figure A11 | The Layout Detection results for various types of documents.

D.3. Reading Order

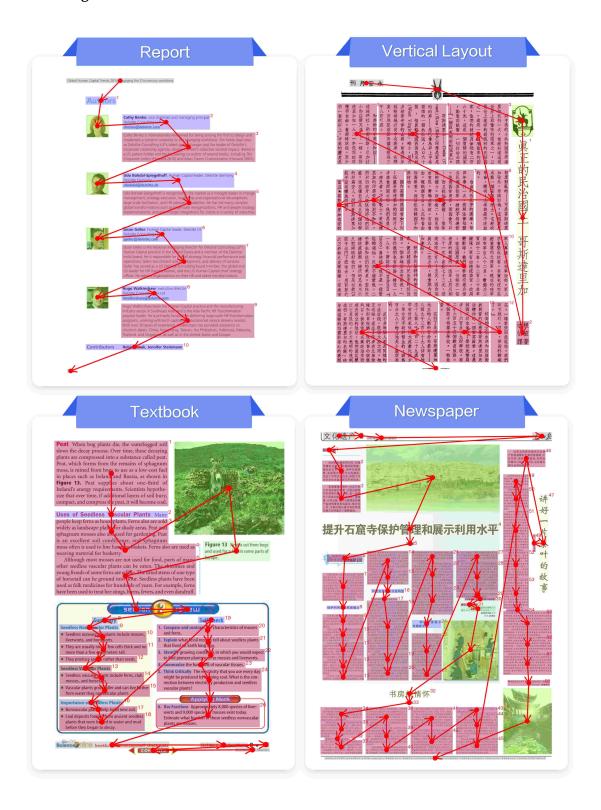


Figure A12 | The Reading Order results for various types of documents.

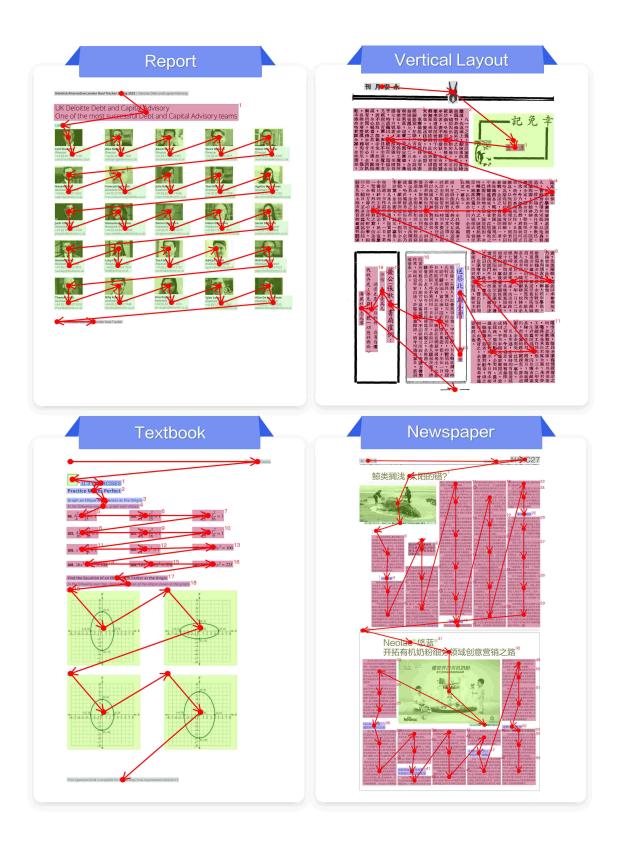


Figure A13 \mid The Reading Order results for various types of documents.

D.4. Text Recognition

D.4.1. Multilingual Text Recognition

Joëlle Marsot:

«IL FAUT DONNER DU SENS AU TRAVAIL DE CHACUN»

Comment bien apprehender la gestion du stress en entreprise?
Sil existe autourchiu de nombreuses solutions pour restreindre le stress, il faut tout
d'abbed comprendre que clui-ci est vien différemment par chaque personne. Il faut dou
d'abbed comprendre que clui-ci est vien différemment par chaque personne. Il faut do
et ses effets destructeurs sont à bannir, il faut aussi fire conscient du besoin de challem
exprine par certains sabaries, dont les plus jeunes. Notre defi quotidines et de trouver
ce douage optimal, structurant, stimulant et postif qui pousse le collaborateur à donne
in mellieur de lui-minen, tout en lui offrant des moments de répit quant clea et nicessa

Que peut faire l'entreprise pour créer ce climat idéal?

vues peus faire i entreprise pour crère ce climat idéai?

Ele peut joure au différents leviers, a commencer par la flexibilité, que ce soit des horai ou du lieu de travail. Depais la création de notre cabinet d'avocats en 2004, MNS: perme le telétravail et amis en place les outils opérationnés et organisationnés pour que câte impose un minimum de 25 jours par an, nous avons pris le pas d'aller au-delà. În junier au 11% de jours de congé en place et cela peut aller jusquià 25 % pour un Manager. Il est également possible de transformer un bonus en jours de congé supplémentaires...

La santé au travail est un autre édément à prendre en considération. De plus en plus d'entre prise mettent en place des programmes pour arrêter de fumer, perdre du poids ou simp ment touter les autres à praidere una activité physique régulênce. De focup plus général mente touter les autres à praidere una activité physique régulênce. De focup plus général mente de la considération. De focup plus général mente de plus de la considération de la considération

Toules ces mesures suffisent-elles à garantir la fin du stress? Non, cela ne sert à rien sans une véritable culture d'entreprise et un mana

Joëlle Marsot: «IL FAUT DONNER DU SENS **AU TRAVAIL DE CHACUN»**

Comment bien appréhender la gestion du stress en entreprise?

o i exame aupoura nui de nombreuses solutions pour restreindre le stress, il faut tout d'abord comprendre que celui-ci est vécu différemment par chaque personns. Il faut donc y apporter des solutions très individuelles. Par allalleurs, s'il est clar que le stress et see effets destructions sont à bannie, fair au sais être conscient du besoin de challenges exprimé par certains salariés, dont les plus jeunes. Notre défit quotidien est de trouver ce dosage optimal, structurant, stimulant et positiq pi opusse le colliborateur à donner le meilleur de lui-même, tout en lui offrant des moments de répit quand cela est nécessaire.

«LA GESTION DU STRESS EST AUSSI DE LA RESPONSABILITÉ DE CHAQUE INDIVIDU.»

Que peut faire l'entreprise pour créer ce climat idéal?

Elle peut jouer sur différents leviers, à commencer par la flexibilité, que ce soit des horaires ou du lieu de trava Depuis la création de notre cabinet d'avocats en 2004, MNKS permet le télétravail et a mis en place les outils opérationnels et organisationnels pour que cela fonctionne. Un autre élément tierr à la question du temps de press. Si la lo luxembourqueise impose un minimum de 25 jours par an, nous avons pris le pas d'alter au-dell Un junior aura 11% de jours de congé en plus et cela peut aller jusqu'à 25 % pour un Manager. Il est égaleme possible de transformer un bonus en pour de congé supplémentaires. Pour beaucoup, le bien-être n'est plus directement associé à la notion d'argent.

La santé au travail est un autre élément à prendre en considération. De plus en plus d'entreprises r Date des programmes pour arrêter de furmer, perdre du ploids ou simplement inciter les salariés à pratiquer un place des programmes pour arrêter de furmer, perdre du ploids ou simplement inciter les salariés à pratiquer un activité physique régulière. De façon plus générale, les services à la personne ont également pris de l'ampleur au cours de ces demirées années. Une conclergérie d'entreprise permet de gaper un temps précieux, libère l'esprit et vient soulager le collaborateur de ses contraintes privées ou professionnelles.

Toutes ces mesures suffisent -elles à garantir la fin du

Non, ceit an esert à rien sans une véritable cutture d'entreprise et un management qui s'implique dans il relation humaine. Chez MHKG, bien que nous soyons un caibine d'avocats avec des titres et des grades, tout le monde s'appeille par son présonn et se tutries. Les associés ont leur bureau au milieu de leurs équipse et leur porte est tolojuers ouvent. C'élément déclencheur de nombreux burn-out réside dans un problème relationnel. Pour éviter cels, il est important de promouvoir un management participatif, dans un environnement collaboratif et transversal. Nous voulons que non managers soient dans l'accompagnement, dans le mentroing et la proximité. Autre point important, nous avons abandonné tout rating de performance. Le plus important est de donner du sens au travail de cheaun, sur base d'une vision stratégique claire qui permet à chacun de décliner ses propres objectifs et comprendre comment il peut y contribuer.

अशोक वाजपेयी की कविताओं में व्यक्तिगत या निजी संबंधों की संवेदनाओं के साथ साथ प्रकृति राग और देह की आसक्ति की संवेदनाएँ भी बार बार रेखाँकित की गयी हैं । उनके काव्य संकलनों और संचयनों के निकट अध्ययन से उनमें अभिव्यक्त अनेक मौलिक विचारों, तत्वों, और प्रतिपत्तियों का संकेत मिलता है । उनमें से एक प्रतिबद्ध कवि के प्रतिपक्ष धर्मी, कला यात्री, लोक धर्मी एवं प्रजातांत्रिक प्रतिमानों के अनेक आयाम उभर आते हैं । अतः उनकी अनुभूति एवं संवेदना का धरातल विस्तृत एवं बहु आयामी है । अपने घर-परिवार, पास -पडोस और कस्बाई जीवन के यथार्थ अनुभवों से ही उनकी कविता प्रस्फुटित हुई है । समकालीन काव्य-तत्वों में प्रमुख मनुष्य जीवन की दुख-दुविधाओं, विषमताओं, अंतर्द्वंद्वों, संघर्षों, विचारों, अनुभवों आदि को कवि अशोक ने अपने जीवन से जोड कर व्यक्त किया है । उनकी कविता इस तरह वैयक्तिक, पारिवारिक, सामाजिक, राजनैतिक, सैद्धांतिक, धार्मिक, आर्थिक, प्राकृतिक, वैचारिक, दार्शनिक आदि धरातलों से होती हुई निकलती है । अशोक वाजपेयी की कविता का पार इतना विस्तृत एवं खुला है जिससे उनकी कविता आज की समकालीन कविता और अपनी पीढि की कविता के बीच एक नयी भावभूमि प्रदान करती है । अशोक वाजपेयी की कविताओं में अभिव्यक्त संवेदनाओं से आम आदमी के जीवन की अनंत छवियों तक हम पहुँच पाते हैं । निम्न मध्यवर्गीय कस्बाई जीवन-परिवेश से निकली उनकी कविता संवेदना की ताजागी एवं शिल्प विधान की मौलिकता में बेजोड़ है । उनकी कविता के बनियादी सरोकार प्रेम, प्रकृति, रति, भाषा, मृत्यु, अनुपस्थिति आदि हैं जो मानव जीवन से संबंधित हैं । उनकी कविता में विशाल लोकानुभव, जन-जीवन के साथ उनका संबंध, लोक- व्यवहार का ज्ञान, समूची मानवीयता की पहचान, सांस्कृतिक दृष्टि, मानवीय-कुंठाओं का प्रतिफलन आदि की अभिव्यक्ति हुई हैं।

आम आदमी के जीवन की गति को रुकावट प्रदान करनेवाले विरोधी तत्वों से लड़ती अशोक की कविताएँ जीवन के लिए एक नया रास्ता खोल कर देती हैं । कवि का सवाल यहाँ स्मरणीय है - 'बिना किसी को मारे जीना कितना मुश्किल है'। अशोक की कविताओं में जीवन जीने की कामना का निरपराध उत्सव भाव, देह की अशोक वाजपेयी की कवितासों में व्यक्तिगत या निजी संबंधों की संवेदनाओं के साथ साथ प्रकृति राग और देह की आसिक की संवेदनाएँ भी बार बार रेखांकित की गयी हैं। उनके काब्य संकलनों और संचयनों के निकट अध्ययन से उनमें अभिब्यक्ति अनेक मौलिक विचारों, ततों, और प्रतिपतियों का संकेत मिलता है। उनमें से एक प्रतिबद्ध कवि के प्रतिपक्ष धर्मों, कला यात्री, लोक धर्मों एवं प्रजातित्क प्रतिमानों के अनेक आयाम उभर आते हैं। अतः उनकी अनुभुत एवं संवेदना का धरातल विस्तृत एवं बहु आयामी है। अपने घर-परिवार, पास -पडोस और करस्बाई जीवन के यथार्थ अनुभवों से ही उनकी कविता प्रसुष्टित हुई हैं। समकालीन काव्य-तलों में प्रमुख मनुष्य जीवन की दुःख-दुविधाओं, विषमताओं, अंतदौंद्रा, संघर्षों, विचारों, अनुभवों आदि को कवि अशोक ने अपने जीवन से जोड़ कर व्यक्त किया है। उनकी कविता इस तरह वैयक्तिक, परिवारिक, सामाजिक, राजनीतिक, सैंडूतिक, धार्मिक, आर्थिक, प्राकृतिक, वैचारिक, दार्शिक आदि धरातलों से होती हुई निकलती है। अशोक वाजपेयी की कविता का पार इतना विस्तृत एवं खुला है जिससे उनकी कविता आज की समकालीन कविता और अपनी पीढ़ी की कविता के बीच एक नयी भावभूमि प्रदान करती है। अशोक वाजपेयी की कविताओं में अभिव्यक्ति संवेदनाओं से आम आदमी के जीवन की अन्त छवियों तक हम पहुँच पाते हैं। निम्न मध्वगारियाँ कसबड़ जीवन-परिवेश से निकली उनकी कविता संवेदना की ताजागी एवं शिल्प विधान की मौलिकता में बेजोड है। उनकी कविता के बुनियादी सरोकार प्रेम, प्रकृति, रति, भाषा, मृत्यु, अनुप्रतिथि आदि हैं जो मानव जीवन से संबंधित हैं। उनकी कविता में विशाल लोकानुभव, जन-जीवन के साथ उनका संबंध, लोक- व्यवहार का झान, समूची मानवीयता की पहचान, सांस्कृतिक दृष्टि, मानवीय-कुठाओं का प्रतिफलन आदि की अभिभविक हुई हैं।

आम आदमी के जीवन की गति को रकावट प्रदान करनेवाले विरोधी तत्वों से लडती अशोक की कवित्तएँ जीवन के लिए एक नया रास्ता खोल कर देती हैं। कवि का सवाल यहाँ स्मरणीय है - 'बिना किसी को मारे जीना कितना मुश्किल है' । अशोक की

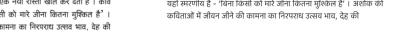


Figure A14 | The markdown output for French and Hindi documents.

Godine 1854. na Rabu boravi još jedan bivši austrijski časnik, ilirac-preporoditelj Ivan Kukuljević Sakcinski, koji je studijski obišao i otoke Krk i Pašman, te Rijeku, Bakar, Senj, Zadar, Šibenik, Split, Klis i Omiš s Poljicima. U djelu "Izvjestje o putovanju po Dalmaciji u jeseni godine 1854. obisvljenom naredne godine iskalijuje svoj bijes na odnos Austro-Ugarske prema kulturnoj baštini hrvatskog naroda, te se osvrće na zapuštene i devastirane rapske crkve i uništen mozaik u crkvi sv. Ivana Krstitelja: "Kada domoljubni Hrvat u ovu crkvu stupi, pak po prekrasnom mozaiku, sada smradom i ruševinom pokrivenom gazeći, krasne one stupove i glavice, umjetno izrezane oltare i kipove, velićanstvene arkade i svodove, lagahne visoke prozore i kamenite grobove s latinskimi i glagolskimi napisi motri, mora da ga obuzme gorka tuga nad propašću naroda i svega toga, što mu je njegda pripadalo". ²⁰ Upravo njegova bogata zbirka spisa, isprava i rukopisa otkupljena sredstvima velikog patriota i mecene, dakovačkog biskupa Josipa Juraja Strossmayera predstavlja fundament arhiva Akademije. ²¹

Slika 4: Fragment mozaika iz crkve sv. Ivana na Rabu, crtež Mijata Sabljara (iz BRADANOVIĆ, 2017)

Godine 1854. na Rabu boravi još jedan bivši austrijski časnik, iliracpreporoditelj Ivan Kukuljević Sakcinski, koji je studijski obišao i otoke Krk i
Pašman, te Rijeku, Bakar, Senj, Zadar, Šibenik, Split, Klis i Omiš s Poljicima. U
djelu "Izvjestje o putovanju po Dalmaciji u jeseni godine 1854, objavljenom
naredne godine iskaljuje svoj bijes na odnos Austro-Ugarske prema kulturnoj
baštini hrvatskog naroda, te se osvrće na zapuštene i devastirane rapske crkve
i uništen mozaik u crkvi sv. Ivana Krstitelja: "Kada domoljubni Hrvat u ovu crkvu
stupi, pak po prekrasnom mozaiku, sada smradom i ruševinom pokrivenom
gazeći, kasne one stupove i glavice, umjetno izrezane oltare i kipove,
veličanstvene arkade i svodove, lagahne visoke prozore i kamenite grobove s
latinskimi i glagolskimi napisi motri, mora da ga obuzme gorka tuga nad
propašću naroda i svega toga, što mu je njegda pripadalo" ²⁰. Upravo njegova
bogata zbirka spisa, isprava i rukopisa otkupljena sredstvima velikog patriota i
mecene, dakovačkog biskupa Josipa Juraja Strossmayera predstavlja
fundament arhiva Akademije. ²¹

Slika 4: Fragment mozaika iz crkve sv. Ivana na Rabu, crtež Mijata Sabljara (iz BRADANOVIĆ, 2017)

Spanish

Concursos de obra realizada El estado de la arquitectura

Arq. María Samaniego

En un escenario arquitectónico global en el que cada vez nos vemos más abocados a un sinfín de investigaciones, artículos, teorías y textos académicos, trabajos de usua o de escritorio y no "del hacer", se aplaude la iniciativa de realizaso concursos, exposiciones o discusiones sobre la obra construida, el quehacer de nuestro oficio de ar-

Sin de nispura manera restar importancia a todas las actividades académicas, al análisis y construcción del pensamiento sobre la arquitectura y la ciudad, los espacios de confrontación de la obra anquibello. Naciendo un símil con la razón fundamenta en base a la que surgieron las blenales de arte, de escala y sín un fin mercantillos, que evidencian el estado del arte en ese momento, las exposiciones o concursos de obra arquitectónica realizada nos obra arquitectónica.

La convocatoria realizada por la Sociedad de Arquitectos del Uruguay SAU para el 2021 fue sin duda un acierto, demostrado por la gran respuesta de proyectos participant tes en las distintas categorías. Tuve el honor de formar parte del equipo de jurados integrado por Héctor Berio y Fernando Giordano, con el acompañamiento de Cristina Bausero. Nos encomendaron juzgar Categoría 4: edificios administrativos, institucionales y corporativos, y la Categoría 5: arquitectura para el trabajo, la producción y los ser-

Es usual encontrarse con una grat diversidad en propuesta, different se scalas, lugares de implanta-ción, usos, sin embargo, La bisqueda por parte de los jurados de apropidad respuesta a su contexta. Folixo, social, cultural, etc. - fuiconstante. Ser jurado internaciono constante. Ser jurado internaciono suspone cierta difficultad, al no co-nocre de primera mano los edifficios sino limitarse a los paneles e información presentada, pero también puede ser una ventaja al tener una mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas dojettiva y un terra del mirada tal ver mas del mirada tal ver mirada tal ver mirada tal ver mas del mirada tal ver mirada

as interesantes y projunois reciones de delberación, alimenadas por estas coincidentes y ambién diferentes condiciones y isisiones, fueron un espacio propiio para concluir que, a pesar de la liferencia de latitudes, una arquiectura de calidad hecha con rigor de manera responsable siempre endrá un carácter universal. Concursos de obra realizada

su país y de su núcleo Pichincha.

El estado de la arquitectura

Urbanismo de la Universidad Central del Ecuador. Tiene vasta experiencia en diseño urbano y arquitectónico, conferencista invitada a nivel nacional e in ternacional en la Bienal de Arquitectura de Quito, dos nominacional en Premio Mies van der Robe de Arquitectura Latinoamenericana, Finalista en Valenal Iberoamericana de Arquitectura y Urbanismo Montevideo, mención de Honor American Architectura Priza 2017, longisto Dezeen Awards 2018, y Infinalista en los pereinos Architeiro Arterim Awards categorio Major de América de Sur y Central, 2021. Ha sido jurado de varrios premios de arquitectura. También fue la presi-denta de la Bienal Panamericana de Arquitectura de Quito BAQ, 2018 y BAQ, 2020, de Docomo Ecuador desde 2017, miembro del consejo técnico de apoyo para el inventario y protección de los bienes immuebles de arquitectura moderna del Ecuador del Ministerio de Cultura y

En un escenario arquitectónico global en el que cada vez nos vemos más abocados a un sinfin de investigaciones, artículos, teorías y textos académicos, trabajos de aula o de escritorio y no "del hacer", se aplaude la iniciativa de realizar los concursos, exposiciones o discusiones sobre la obra construida, el quehacer de nuestro oficio de

, coordinadora de bienales y congresos de la FPAA, 2021-2024, presidenta del colegio de arq

Sin de ninguna manera restar importancia a todas las achividades académicas, al análisis y construcción del penasmiento sobri la arquitectura y la ciudad, fos espacios de confrontación de la obra arquitectricha cresultan imprescindibles. Haciendo un simil con la razón fundamental en base a la que surgieron las bienales de arte, de ser espacios de exposición a gran escala y sin un fin mercantilista, que evidencian el estado del arte en ese momento, las exposiciones o concursos de obra arquitectriciar aerultada nos dejan ver el estado de la artendirectura.

La convocatoria realizada por la Sociedad de Arquitectos del Uruguay SAU para el 2021 fue sin duda un acierto, demostrado por la gran respuesta de proyectos participantes en las distintas categorías. Tuve el honor de formar parte del equipo de jurados integrado por Héctor Beño y Fernando Giordano, con el acompañamiento de Cristina Bausero. Nos encomendaron juzgar la Categoría 4 edificios administrativos, institucionales y corporativos, y la Categoría 5: arquitectura para el trabajo, la producción y los servicios.

Es usual encontrarse con una gran diversidad de propuestas, diferentes escalas, lugares de implantación, usos; sin embargo, la búsqueda por parte de los jurados de una calidad arquitectórica y de una apropiada respuesta a su contesto -físico, social, cultural, etc.- Lue constante. Est juridad internacionis supone iderta dificultad, al no conoce de primera mano los edificios sino limitarse a los paneles e información presentada, pero también puede ser una ventaja al tener una minidad tal ver existo objetivo y una perspectiva desde fue una ventaja el tener una minidad tal ver existo objetivo y una perspectiva desde fue una ventaja el tener una minidad at ver existo.

Las interesantes y profundas reuniones de deliberación, alimentadas por estas coincidentes y también diferentes condiciones y visiones, fueron un espacio propicio para concluir que, a pesar de la diferencia de latifudes, una arquitectura de calidad hecha con rigor y de manera responsable siempre tendrá un carácter universal.

mach salmsheep where them, it closely for a consistent of the consistent of the consistent of the townsheed entered of transfer free variations for the consistent of the consistent of the intermediated of the Sendi of Ampitectura conference and the Sendi of Ampitectura can, freeling of the Consistent of the sending of the Consistent of the properties of the Consistent of Con

22 | ARQUITECTURA | 274 | Sociedad de Arquitectos del Uruguay

Figure A15 | The markdown output for Croatian and Spanish documents.

yet there remains a gap between academic research prototypes and production-ready systems capable of supporting the stringent requirements of dataset construction, RAG workflows, and large-scale document intelligence.

PaddleOCR 1.x & 2.x: Advancements and Innovations in Open-Source OCR Technology

PaddleOCR 1.x & 2.xx Advancements and Innovations in Open-Source OCR Technology PaddleOCR has emerged as a prominent open-source project addressing these multifaceted challenges. Since its initial release in 2020, PaddleOCR has adhered to the principles of comprehensive coverage, end-to-end workflow, and lightweight efficiency, setting new standards for both usability and technical excellence in the OCR domain. Anchored by the PP-OCR series, PaddleOCR has evolved through multiple iterations—each pushing the boundaries of text detection, recognition, and document analysis. Early versions such as PP-OCRVID(but et al., 2023) of focused on achieving an optimal balance between accuracy and speed, making OCR accessible for resource-constrained environments. Subsequent releases (PP-OCRVIZ(Dut et al., 2021), v3(Lt et al., 2022), v3(Lt et al., 2022)), and v4) incrementally improved recognition performance, extended language coverage, and introduced sophisticated models for handwriting and rare character recognition. A notable advancement has been the integration of document structural understanding via the PP-Structure series, enabling PaddleOCR to move beyond text lines and paragraphs to address complex layout analysis, table structure recognition (e.g., SLANeffLi et al., 2022),), and other advanced parsing tasks. These capabilities have made PaddleOCR a critical engine for automated document processing, intelligent archiving, information extraction, and, increasingly, for supporting the data pipelines of LLMs and RAG systems.

The adoption and impact of PaddleOCR in to both candemic and industrial communities are

The adoption and impact of PaddleOCR in both academic and industrial communities are evidenced by its widespread use and vibrant developer ecosystem. With more than 50,000 stars on GiftHub as of June 2025, and its deployment as the core OCR engine in projects such as MinerU(Wang et al., 2024), RAGFlow(KevinHuSs, 2023), and UmioCR(hirei sora, 2022), PaddleOCR has become an indispensable tool for digitization initiatives, knowledge management platforms, and Al-driven document analysis workflows. Notably, PaddleOCR has played a central role in the construction of high-quality document datasets for large model training, enabling researchers to assemble diverse, accurately annotated corpora spanning multiple languages, domains, and document types. Its modular architecture and rich API ecosystem facilitate seamless integration with RAG pipelines, where efficient and accurate OCR is essential for document ingestion, retrieval indexing, and context provision to generative models.

As PaddleOCR is user base as expanded, so has the range of fordback and requirements.

for document ingestion, retrieval indexing, and context provision to generative models.

As PaddleCCR's user base has expanded, so has the range of feedback and requirements from the community. Users have highlighted persistent needs in areas such as robust handwriting recognition, improved support for multi-language and rare script recognition, more powerful document parsing for complex layousts, and advanced key information extraction. These demands are further amplified by the growing scale and dynamism of LLM and RAG applications, where the ability to extract structure, and semantically interpret information from diverse documents is a prerequisite for building reliable, responsive, and intelligent systems. Aware of these trends and our responsibility as a leading open-source platform, we remain committed to continuously improving PaddleCCR to meet the evolving challenges of the field.

PaddleOCR 3.0: A New Milestone in Enhancing Text Recognition and Document Parsing

In this context, we introduce PaddleOCR 3.0, a major release designed to systematically enhance text recognition accuracy and document parsing capabilities, with a particular focus on the complex scenarios encountered in modern AI applications. PaddleOCR 3.0 encompasses several core innovations. First, it presents the high-precision text recognition pipeline PO-CCRV5, which leverages advanced model architectures and training strategies to deliver state-of-the-

PaddleOCR 1.x & 2.x: Advancements and Innovations in Open-Source OCR Technology

PaddieUCN 1x 8 2x: Advancements and innovations in open-source UCN recinnology PaddieUCN as emerged as a prominent open-source project addressing these multifaceted challenges. Since its initial release in 2020, PaddieUCR has adhered to the principles of comprehensive coverage, end-to-end workflow, and lightweight efficiency, setting new standards for both usability and technical excellence in the OCR domain. Anhored by the PP-OCR series, PaddieOCR has evolved through multiple terations—each pushing the boundaries of text detection, recognition, and document analysis. Early versions such as PP-OCR/IQD et al., 2021 focused on achieving an optimal balance between accuracy and speed, making OCR accessible for resource-constrained environments. Subsequent releases (PP-OCR/2[Du et al., 2021), v3(ii. et al., 2022), and vilincementally improved recognition performance, extended language coverage, and introduced sophisticated models for handwriting and rare character recognition. A notable advancement has been the integration of document structural understanding via the PP-Structure series, enabling addieOCR to move beyond text lines and paragraphs to address complex layout analysis, table structure recognition (e.g., SLANEL(Li et al., 2022a)), and other advanced paraing tasks. These capabilities have made PaddieOCR a critical engine for automated document processing, intelligent archiving, information extraction, and, increasingly, for engine for automated document processing, intelligent archiving, information extraction, and, increasingly, for supporting the data pipelines of LLMs and RAG systems.

Supporting the date pipelines of Links alto Anny Systems.

The adoption and impact of PaddieloCOR in both academic and industrial communities are evidenced by its widespread use and vibrant developer ecosystem. With more than 50,000 stars on GitHub as of June 2025, and its deployment as the core OCR engine in projects such as MinetU (Wang et al., 2024), RAGFlow (Revinhu5A, 2023), and UmORC (Rirol loars, 2022), addieOCR has become an indispensable tool for digitization initiatives, knowledge management platforms, and Al-driven document analysis workflows. Notably, PaddleOCR has played a central role in the construction of high-quality document datasets for large model training, enabling researchers to assemble diverse, accurately annotated corpora spanning multiple languages, domains, and document types. Its modular architecture and rich API ecosystem facilitate seamless integration with RAG pipelines, where efficient and accurate OCR is essential for document ingestion, retrieval indexing, and context revusions to negaritive models. provision to generative models

As PaddleOCR's user base has expanded, so has the range of feedback and requirements from the community. Users have highlighted persistent needs in areas such as robust handwriting recognition, improved support for multi-language and rare script recognition, more powerful document parsing for complex layouts, and advanced key information extraction. These demands are further amplified by the growing scale and dynamism of LLM and RAG applications, where the ability to extract, structure, and semantically interpret information from diverse documents is a prerequisite for building reliable, responsive, and intelligent systems. Aware of these trends and our responsibility as a leading open-source platform, we remain committed to continuously improving PaddleOCR to meet the evolving challenges of the field.

PaddleOCR 3.0: A New Milestone in Enhancing Text Recognition and Document Parsing

lease pledais العربية المستعدمة اليوم في الحالم العربي تنثمل للغة النصى واللهمات العاملية النصى هي لغة القرآن وأعمال الادباء العرب مند بدابة الناريج الأدبي وهي لانزال اليوم اللغة المستعلمة في المعلان والعرائل و الكتب والمعاضرات و الإداعة و غيرها من المناسبات الرسمية أما اللهجان العامية فتستدام للمعاطب في الحياة اليومية، فهي تسمعدم مناك في البيت و لقدنطور تالفصى والعامية علال ناريخهما اللورا كبيرا خالفهيعي فند الغواعد في الغرآن الكريم وأعمل الادب العربي القايم علمة أما العامية فقد تعيرت لهجانها وأشكالها القليمة و أحيدت نختلف من بلدالي آخراهيلا فاكبيرا. فاللمجة المصربة مثلانعتاعن عن اللهجة العراقية واللهجة البنانية تعناف من اللهجة السعورية. وكنيرمن الادباء لعرب المعاصرين بلنبون القمة بالفعى ولكن البعض بفصلون يعتملون كنابة الموار بالحامية إن اللغة العربية تربط بالادالحالم العربي المحاصر

الغضر والعاصبة العربية المستخدامة اليوم في الحالم العربي تذنفهل اللغة الفصحي واللهجات العلمية الفصحي هي لخة القرآن وأعمال الادباء العرب منذ بدابة الناريم الادبي وهي لازال اليوم الخلة المستخلمة في المجالات والجرائد والكتب والمحاضرات والإذاعة وغيرها مزُّ الْمَسَابِات الرَسْمِيَّة أما اللهِجَان العَامِيَّة فَتُسْتَحَامَ للنحاطب في الحياة اليومية، فهي تستخدام منتج في البيت و لقانطون النفصى والحامية خلال نار يخهمما الطورا كبيرا فالفصحي فند الفواعد في الفرآن الكريم وأعمل الادب العربي القابم علمة، أما الحامية فقد تعبرت لهجائها وأشكالها الناس يجب و أصبحت تختلف من بلد إلى أخراه بالا فا كبيرا. فاللهجة الصرية منالا تختلف عن الجهجة الصراخية واللهجة اللبنائية تحالف من الاهجة السعودية. وكثير من الادباء لعرب المعاصرين بكينون القصة بالفحي ولكن البعض بقضون بعض٨٣ كتابة الجوار بالحامية إن

الغة العربية نزيط بلاء العالم العربي المعاصر

Figure A16 | The markdown output for English and Arabic documents.

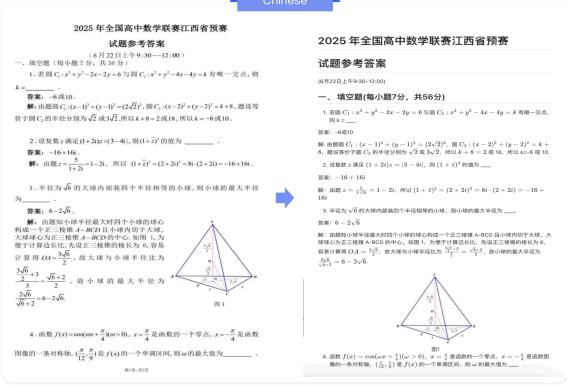


Figure A17 | The markdown output for German and Chinese documents.

Russian

обществ. Первое в истории научное географическое общество (Société de Géographie), главива цель которого способствовать развитию научной географии, соговаю в 1821 г. в Париже. В это время в связи с расширением колониальной экспансни государств комтинента в Европе возрастает неподдельный интерес к другим герриториям. С 1822 г. издается «Информационный бюллень географического общества» (фр. «Bulletin de la Société de Géographie»). Впоследствии модель. Французского географического общества становится эталоном для создания подобных организаций.

Так, в 1828 г. открывается географическое общество (Gesellschaft für Erdkunde) в Берлине, которое с 1853 г. начинает издавать научный журнал «Земля» («Бір Егре»). В 1830 г. в Лимное соцоваю Котоловское географическое общество (Становское предемать и Становское предемать и предемать и предемать и предемать и предемать и пре

Так, в 1828 г. открывается географическое общество (Gesellschaft für Erdkunde) в Берлине, которое с 1853 г. начинает издавать научный журнал «Земля» («Оне Егде»). В 1830 г. в Лондоне основано Королевское теографическое общество (Royal Geographical Society) в целях исследования и популяризации географии как науки.

В 1845 г. создается Русское географическое общество, которое охаракте-

В 1845 г. создается Русское географическое общество, которое охарактеризовано известным географом, путепиственником и государственным деятелем П.П. Семеновым-Тви-Шанским как «свободная и открытая для всех, кто проникнут любовью к родной земле и глубокой, несокрушимой верой будущность Русского государства и русского народа, корпорация» (шт. по: [5, URL]). С 1865 г. по настоящее время обществом издается научный журнал «Известия Русского географического общества». В 1888 г. в Вашнитгове в целях «расширения и распространения географических знаний» («for the increase and diffusion of geographical knowledge»

В 1888 г. в Вашинитоне в целях «расширения и распространения географических знаний» («for the increase and diffusion of geographical knowledge» [12, р. 14], перевод наш. — Н. Г.) среди массовой зудитории создается Национальное географическое общество (National Geographic Society). Этот фуздаментальный принции, определяющий дальнейшую политику Национальног географического общества, был заложен его первым президентом Г.Г. Хаббардом (Сагdiner Greene Hubbard, 1822—1897). В октябре 1888 г. для распространения географическое общество выпускает научный журнал National Geographic [19, с. 369].

научным журнал ганован сеодгарите [19, с. 309].

Становится естественным и необходимым процессом обмен мнениями о последних достижениях географической науки, в связи с чем растег межкультурнав научная коммуникация [11, с. 37], инсьменная форма которой представлена изданиями первых географических обществ. Это сугубо научные географические издания, ориентированные на узкоспециализированизую водиторию — профессионалов. Первоначально в инх публикуются только хроникальные сообщения, сведения о новых книгах и выдержки из них. Отражение результатов научных исследований носит предварительный характер и выражено в традиционной форме писем. Интересом к научным открытиям со стороны простых граждан, вызванным ростом гражданского самосознания [11, с. 37], обусловлено издание не только научных, но и научно-популярных географических журналов, рассчитанных на широкую астигомие.

обществ. Первое в истории научное географическое общество (Société de Géographie), главная цель которого способствовать развитию научной географии, основано в 1821 г. в Париже. В это время в связи с расширением колониальной экспански государств континента в Европе возрастает неподдельный интерес к другим территориям. С 1822 г. издается «Информационный бюллетены географического общества» (фр. «Bulletin de la Société de Géographie»). Впоследствии модель Французского географического общества становится эталоном для создания подобных организаций.

Так, в 1828 г. открывается географическое общество (Gesellschaft für Erdkunde) в Берлине которое с 1853 г. начинает издавать научный журнал «Земля» («Die Erde»). В 1830 г. в Лондоне основано Королевское географическое общество (Royal Geographical Society) в целях исследования и популяризации географии как науки.

В 1845 г. создается Русское географическое общество, которое охарактеризовано известным географом, путешественником и государственным деятелем П.П. Семеновым-Тан-Шанским как «свободная и открытая для всех, кто проникнут любовыю к родной земле и глубокой, несокрушимой верой в будущность Русского государства и русского народа, корпорация» (цит. по: [5, URL]). С 1865 г. по настоящее время обществом издается начичный жуюлам «Известия» Русского государствам издается

В 1888 г. в Вашинттоне в целях «расширения и распространения географических заний» («for the increase and diffusion of geographical knowledge» [12, р. 14], перевод наш. — Н. Г.) среди массовой аудитории создается Национальное географическое общество (National Geographic Society). Этот фундаментальный принцип, определяющий дальнейшую политику Национального географического общества, был залюжен его первым президентом Г.Г. Хаббардом (Gardiner Greene Hubbard, 1822—1897). В октябре 1888 г. для распространения географических знаний Национальное географическое общество выпускает научный журнал National Geographic [19, с. 369].

Становится естественным и необходимым процессом обменнениями о последних достижениях географической науки, в связи с чем растет межкультурная научная коммуникация [11, с. 37], письменная форма которой представляет изданиями первых географических обществ. Это сугубо научные географические издания, ориентированные на узюспециализпро-ванную зудиторию — профессионалов. Первоначально в них публикуются только хроникальные сообщения, сведения о новых книгах и выдержки из них. Отражение результатов научных исследований носит предварительный характер и вражено в традиционной форме писем. Интересом к научным открытими со стороны простых граждан, вызванным ростом гражданского самосознания [11, с. 37], обусловлено издание не только научных, но и научно-популярных географических журналов, рассчитанных на широкую аудиторию.

より詳しく知りたい方へ より詳しく知りたい方へ ~県立図書館にある今回の展示資料~ ~県立図書館にある今回の展示資料~ ※雑誌:発行年月順『誌名』巻号 出版年 出版者(創刊号は創刊当時の出版者) リスト掲載の雑誌は貸出ができませんが、複写が可能です。 リスト掲載の雑誌は貨出ができませんが、複写が可能です。 *図書:『書名』著者名 発行者 出版年 所蔵館【県立図書館の請求記号】 *以下に掲載した資料は、県立照谷図書館2階ロビーで8月25日(日): ※図書:『書名』著者名 発行者 出版年 所蔵館【県立図書館の請求記号】 ※以下に掲載した資料は、県立熊谷図書館2階ロビーで8月25日(日)まで展示中です。 剣刊絵誌に関する図書 『創刊号のバノラマ』(うらわ萎術館 / 線 岩波書店 2004.9) 【R027.5/ソウ/】 「日本雑誌協会史 第1部』(日本雑誌協会 /編 日本雑誌協会 1968) [050/N71/] ◆ 創刊雑誌に関する図書 ・新刊雑誌「関する販客 「割刊号のバノラス!(うらわ失所館/編 岩液書店 2004.9)[R027.5//ウ/] 「同十位割かた編集者 10.1(中田博/編 新書館 2003.8)[021.43/ウ/] 「日本被監協会史 第 1 節.1(日本被監協会/編 日本被監協会 1889][560/N71/] 「日本被監協会更 第 1 節.(日本被監協会/編 日本被監協会 1889][560/N71/] 「昭越: 100 年の歩み』(塩川実施/番 ブリーンアロー出版社 1994.9)[501/ヴ/] 「開越: 100 年の歩み』(塩川実施/番 ブリーンアロー出版社 1994.9)[501/ヴ/] 「開越: 100 年の歩み』(塩川実施/番 ブリーンアロー出版社 1994.9)[501/ヴ/] 「開始: 100 年の歩み』(塩川実施/番 光線社 2009.11)[501/ヴ/] 「新刊明・請け、土人の編集者 1982.11][501/ヴ/] 「新刊明・請け、土人の編集者 1982.11][501/ヴ/] 「新刊財、研究(「健康女田/本 第 以東書所 2009.10[51/ヴ/] 「吉福誌研究』(小田光郎/著 旅朝社 2009.4)[501/ブル/] 「古祖誌研究』(小田光郎/著 旅朝社 2009.4)[501/ブル/] 「江州オンセラー誕生へ・1』(日前時物館/編署 東京書籍 2008.9)[501/ゼリ/] 『日本雑誌協会史 第2部』(日本雑誌協会 / 編 日本雑誌協会 1969)【050/N71/】 ** 「日本報品の田京氏 第2回2 (日本報品の田京 (日本報品の田京 1909) ** 「韓誌大研究」(高級精一/著 日本工業新聞社 1979.2 [605 リサル] ** 『韓誌 100 年の歩み』(塩沢実信/著 グリーンアロー出版社 1994.3 [『韓誌の死に方』(浜崎広/著 出版ニュース社 1998.3] [65 リサッ/] 『雑誌は見ていた』。 (植田康夫/著 水曜社 2009:11) 【051/サツ/】 海部科号に関けよの協議会。(福祉政会 1981年) [051/J] 「部刊記大研究 (標高単樹/ 著 大陸書房 1982-11) [051/J] 「部刊記大研究 (標高単樹/ 著 大陸書房 1982-11) [051/フ/] 『古雑誌探究』(小田光雄 / 著 論創社 2009.4)【051/フル/】 ミリオンセラー誕生へ! (印刷博物館 / 編著 東京書籍 2008.9) 【051/ミリ/】 ◆明治 ◆ 明治 『出版月評』1号(明治20年8月)月評社(複製版 龍渓曹含) (雑誌) 「龍門雜誌』1号(明治21年4月)龍門社 『図書館雑誌』1号(明治40年10月)日本文庫協会(複製版 学術文献普及会) 『中央公論』 25年5号(明治43年5月)反省社 『中央公論』100年を読む』(三浦朱門/著 中央公論社 1986.8)【051.3/ミ/】 (図書) 『中央公論」100 年を終む』(三浦朱門/著 中央公論社 1986.8) [051.3/ミ/] 『明治大雑誌』(流動出版 1978.12) [051///] 『明六雑誌 上』(山堂信一/校注 岩波書店 1999.5) [8051.1/メイ/] 明治大雑誌(流動出版 1978.12) 【051/ヌ/】 ◆ 大正 (機能) 『思想』 創刊号(大正6年5月) (裕波書店) (模製版) 『思想』 1号(大正10年10月) (裕波書店) (復制版) 『理像(人』 創刊号(大正10年10月) (種跡を2) (復制版) 7 『種蒔く人』創刊号(大正10年10月)(種蒔き社)(複刻版 ほるぶ出版

Figure A18 | The markdown output for Russian and Japanese documents.

1. บทนำ

เป้าหมายการพัฒนาที่ยั่งยืน (Sustainable development goals (SDGs) ให้ความสำคัญกับการสร้าง หลักประกันการมีสุขภาวะที่ดีและส่งเสริมความเป็นอยู่ที่ดี สำหรับทุกคนในช่วงวัย ซึ่งมีเป้าหมายครอบคลุมในหลาย ประเด็นด้านสุขภาวะและความเป็นอยู่ที่ดี โดยมีนโยบาย การสร้างและรักษากำลังคนด้านสุขภาพและเสริมขีด ความสามารถในการลดความเสี่ยง และการบริหารจัดการ ความเสี่ยงด้านสุขภาพ ซึ่งสอดคล้องกับประเทศไทยที่ให้ ความสำคัญและมีนโยบายในการพัฒนาแรงงานไทยสู่ความ มั่นคง มั่งคั่ง ยั่งยืน ตามยุทธศาสตร์ชาติระยะ 20 ปี (ปี พ.ศ. 2560 - 2579) และจากแผนยุทธศาสตร์แห่งชาติ กลุ่มสตรี และเด็กปฐมวัย กลุ่มวัยเรียน กลุ่มวัยรุ่น กลุ่มวัยทำงาน และ กลุ่มวัยผู้สูงอายุเป็นกลุ่มที่กระทรวงสาธารณสุขให้ความสำคัญ ซึ่งมีความเชื่อมโยงกับยุทธศาสตร์ชาติประเด็นที่ 13 การสร้าง สภาพแวดล้อมที่เอื้อต่อการมีสุขภาวะที่ดี เพื่อให้บรรลุ เป้าหมาย "การสร้างเสริมให้คนไทยมีสุขภาวะที่ดี" ซึ่งเป็น กำลังสำคัญในการพัฒนาประเทศชาติ โดยเฉพาะอย่างยิ่ง กลุ่มวัยทำงานหรือวัยแรงงาน จากข้อมูลของสำนักงานสถิติ แห่งชาติรายงานว่าในปีพ.ศ. 2564 ประชากรในประเทศไทยมี งานทำ 37,751,297 คน ทำงานในพื้นที่ภาคตะวันออก จำนวน 3,362,833 คน [1] และเนื่องจากเศรษฐกิจโลกปี 2565-2567

1. บทนำ

เป้าหมายการพัฒนาที่ยังยืน (Sustainable development goals (SDGs) ให้ความสำคัญกับการ สร้างหลักประกันการมีสุขภาพที่และส่งเสริมความเป็น อยู่ที่ดี สำหรับทุกคนในช่วงวัย ซึ่งมีเป้าหมายครอบคลุม ในหลายประเด็นด้านสุขภาพและความเป็นอยู่ที่ดี โดย มีนโยบายการสร้างและรักษากำลังคนด้านสุขภาพและ เสริมชุดความสามารถในการลดความเสี่ยงและการ บริหารจัดการความเสียดำนุนสุขภาพ ซึ่งสอดคล้องกับ ประเทศไทยที่ได้ความสำคัญและมีนโยบายในการ พัฒนาแรงงานโดยสขความมั่นคง ยังยืนตาม ยุทธศาสตร์ข่ายระยะ 20 ปี (ปี พ.ศ. 2560 - 2579) และจากแผนยุทธศาสตร์แห่งชาติ กลุ่มสตรีและเด็กปฐม ทั่ว กลุ่มวัยเรียน กลุ่มวัยรุ่น กลุ่มวัยทำงาน และกลุ่มวัย สุขภาพยุบันกลุ่มที่กระทรวงสาธารณสุขให้ความสำคัญ ซึ่งมีความเขื่อมโยงกับยุทธศาสตร์ชาติประเด็นที่ 13 การสร้างสภาพแวดล้อมที่เอือตการมีสุขภาพที่เพื่อให้ บรรลุเข้าหมาย "การสร้างเสริมให้คนไทยมีสุขภาพที่ดี" ซึ่งเป็นกำลังสำคัญในการพัฒนาประเทศชาติ โดยเฉพาะ อย่างยิ่งกลุ่มวัยทำงานหรือวัยแรงงาน จากข้อมูลของ สำนักงานสถิติแห่งชาติรายงานว่าในปีพ.ศ. 2564 ประชากรในประเทศไทยมีงานทำ 37,751,297 คน ทำงานในพื้นที่ภาคตะวันออก จำนวน 3,362,833 คน [1] และเมื่อจากเศรษฐกิจโลกปี 2565-2567

Korear

한국영화를 꽃피워낸 한국영화산업의 심장 그 새로운 박동

인터뷰 진행-정리 <영화부산> 편집팀

전 사가가 주목하는 한국업회의 한국 업회본회의 중심에는 업화진동위원회가 있다. 2002년은 영화보육위원회의 항접 90억년, 한국업회에가 대한미 개교 40억년 그리고 기 2014년 이전 1914년 명인 1915년 원인 한국 121년 전 1914년 명인 작년 전 국 집에는 영화에 사료의 기업에서 대접의 대한민기를 하는 80억년, 미인 다시 지난 반사기를 단체적고 제공은 영화에 사료를 맞이하기 위해 영화시고 있는 영화진흥위원회에 박기용 위원회를 만난 현국장에는 단체 이용의 조는 그리고 내용의 이야기를 했다.

한국영화를 꽃피워낸 한국영화산업의 심장 그 새로운 박동

인터뷰 진행·정리 <영화부산> 편집팀

전 세계가 주목하는 한국영화와 한국 영화문화의 중심에는 영화진흥위원회가 있다. 2023년은 영화진흥위원회의 창립 50주년 한국영화아카데미의 개교 40주년 그리고 기관의 부산 이전 10주년을 맞이한 뜻깊은 한 해다. 그리고 한국영화산업은 막 내린 팬데믹과 접어든 엔데믹 시대의 기로에서 격동의 대전환기를 겪는 중이기도 하다. 지난 반 세기를 뒤로하고 세로운 영화의 시대를 맞이하기 위해 앞장서고 있는 영화진흥위원회의 박기용 위원장을 만나 한국영화산업의 어제와 오늘, 그리고 내일의 이야기를 들었다.

-

영화진흥위원회에 대한 간략한 소개를 부탁드린다

올해로 창립 50주년을 맞이한 영화진흥위원회(이하 영진위)는 한마디로 말씀드리면 한 국영화를 책임지는 정부 기관이다. 저는 K-콘텐츠와 K-컬처를 K-무비가 선도하고 있다 고 생각하는데 영진위는 그런 K-무비의 본산이라고 말씀드릴 수 있다.

을 상반기 영진위 창립 50주년을 기념하며 국민이 선정한 영진위와 한국영화 뉴스 Top10을 조사해 공개했다. 개인적으로 꼽는 영진위 최고 뉴스와 한국영화 최고 뉴스는 무엇이가.

먼저 영진위 최고 뉴스는 1973년 영화진흥공사 창립을 꼽겠다. 73년이면 한국영화가 멀시 어려울 때였다. 군사독재 시대이자 영화산업 자체가 정부에서 허가한 20개의 영화산만이 수입, 제작, 배급을 할 수 있는 시기였다. 허가 역시도 매년 정부의 재허가를 받아야 했기에 제작은 철저하게 국책영화 중심이었고, 수입과 배급은 돈벌이 수단에 그 쳤다. 그런 상황 속에서 영화인들이 '이런 식'이면 한국영화는 진짜 죽는다'라는 위기의식을 가지고 한국영화를 진흥할 수 있는 기구 설립이 필요하다고 해서 만들어진 것이 영화진흥공사다.

영화진흥위원회 박기용 위원자

명화진흥위원회에 대한 간략한 소개를 부탁드린다

올해로 창립 50주년을 맞이한 영화진흥위원회이하 영진위》는 현이디로 말씀드리면 한 국영화를 책임지는 정부 기관이다. 저는 논편변츠와 사람처를 사무비가 선도하고 있다고 생각하는데 영진위는 그런 '사무비의 본산'이라고 앞쓴드릴 수 있다.

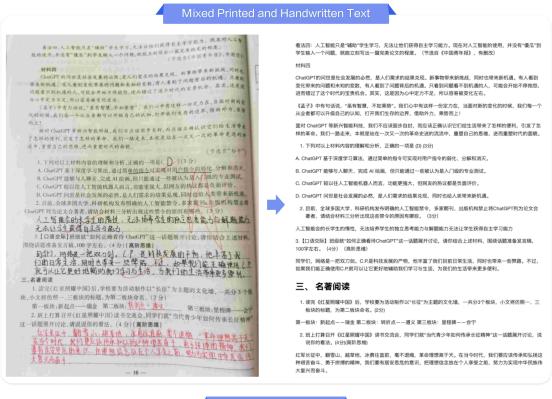
을 상반기 영진위 창립 50주년을 기념하며 국민이 선정한 영진위와 한국영화 뉴스 ToplO을 조사해 공개했다. 개인적으로 꼽는 영진위 최고 뉴스와 한국영화 최고 뉴스는 무엇인가.

전에 정당에 최고 뉴스는 1973년 영화단층과사 창원을 꼽겠다. 7개년이전 한국영화가 용사 아이를 때한다. 군사투자 사태이자, 영화난한 자체가 장바이서 하가난 20개의 영화 사건이 아인, 제국, 배교을 할 수 있는 사기였다. 하가 역사도 때한 정부의 제작가를 받아 한 장마에 제작은 발자에 국제업회 중심하였고, 수업과 배리은 본에야 수단에 그렇다. 그런 상황 속에서 영화인들이 이런 사이면 한국영화는 만짜 주는다라는 위기에서을 가 지고 한국영화를 진흥할 수 있는 기구 상원이 필요하다고 해서 만들어진 것이 영화단층 고나다

FILM BUSAN 41

Figure A19 | The markdown output for Thai and Korean documents.

D.4.2. Handwriting Text Recognition



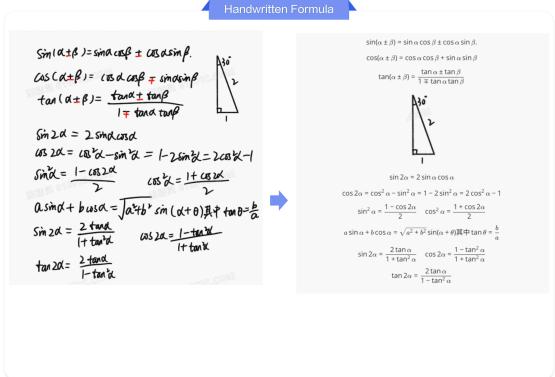


Figure A20 | The markdown output for Mixed Printed Handwritten Text and Handwritten Formula documents.

Handwriting Chinese

腰脆脂肉,一半用来做红烧肉.柴火灶烧 出来的红烧肉特别香。外婆总会烧上一大盆, 每天挖一碗出来吃,冬天的平台特别台,就 这样放一个因也不会坏。下雪了,外婆就不出门 干活了,陪我和妹妹坐在火桶里碗扑克我们 坐在温暖的火桶里,看着远处高山上的积雪 越来越厚,成了一个银装素裹的世界。 上高中后,因为要补课,我们便不回外要家 3, 再后来, 吹习恨了空洞, 便再也没回外婆家住过, 只是偶尔国玄看看外公,呆上半天便又走了。外婆 是重养媳,从小便和外公订了姓姓子,他们性 格不合,总是吵架,所以只剩外公一人在包家, 外婆-直和我们生活在一起,外婆是什么时候 变充3呢?是从我外出念大学?尽是武务加工 作:柳或是猪妇生孩子?而我又是什么时候 从天天高不开把怀抱的小女孩到如今连和把 好好聊会天都不行了呢!想到这里,我很难受外 婆的一生都是围着我们几个,现在年纪大了.很 为朋友也去世了,想,找个人聊一聊似乎成了一件

看份的事情。只希望疫情快点过去,还能有机

用来腌腊肉,一半用来做红烧肉。柴火灶烧出来的 红烧肉特别香。外婆总会烧上一大盆,每天挖一碗 出来吃,冬天的严台特别冷,就这样放一个月也不 会坏。下雪了,外婆就不出门干活了,陪我和妹妹 坐在火桶里玩扑克。我们坐在温暖的火桶里,看着 远处高山上的积雪越来越厚,成了一个银装素裹的 世界。

上高中后,因为要补课,我们便不回外婆家了,再后来,吹习惯了空调,便再也没回外婆家住过。只是偶尔回去看看外公,呆上半天便又走了。外婆是童养媳,从小便和外公订了娃娃亲,他们性格不合,总是吵架,所以只剩外公一人在老家,外婆一直和我们生活在一起。外婆是什么时候变老了呢?是从我外出念大学?还是我参加工作?抑或是结婚生孩子?而我又是什么时候从天天离不开她怀抱的小女孩到如今连和她好好聊会天都不行了呢?想到这里,我很难受,外婆的一生都是围着我们几个,现在年纪大了,很多朋友也去世了,想找个人聊一聊似乎成了一件奢侈的事情。只希望疫情快点过去,还能有机

Handwriting English

Keep an eye on the clock and make sure you have enough time to consuer all the questions.

In addition, I want to remind you to take care of yourself during this stressful time. Make sure to get enough rest, each well, and take breaks to relax and clear your mind. Your physical and mental well-being is important, and it will help you perform better in the exam.

In conclusion, I want to wish you all the best of tuck in the middle school entrance examination. Say calm, other focused, take care of yourself, and believe in yourself. You have the prential to achieve great things and I am confident that you will succeed.

Guad luck!

Keep an eye on the clock and make sure you have enough time to answer all the questions.

In addition, I want to remind you to take care of yourself during this stressful time. Make sure to get enough rest, eat well, and take breaks to relax and clear your mind. Your physical and mental well-being is important, and it will help you perform better in the exam.

In conclusion, I want to wish you all the best of luck in the middle school entrance examination. Stay calm, stay focused, take care of yourself, and believe in yourself. You have the potential to achieve great things and I am confident that you will succeed.

Good luck!

Figure A21 | The markdown output for Handwriting Chinese and Handwriting English documents.

D.4.3. Vertical Text Recognition

Figure A22 | The markdown output for various types of vertical documents.

D.5. Table Recognition

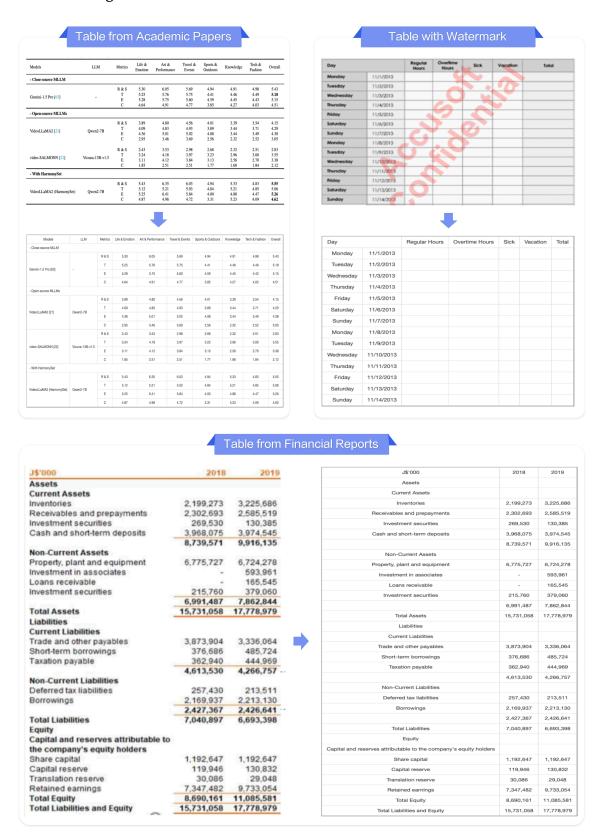


Figure A23 | The markdown output for various types of Tables.

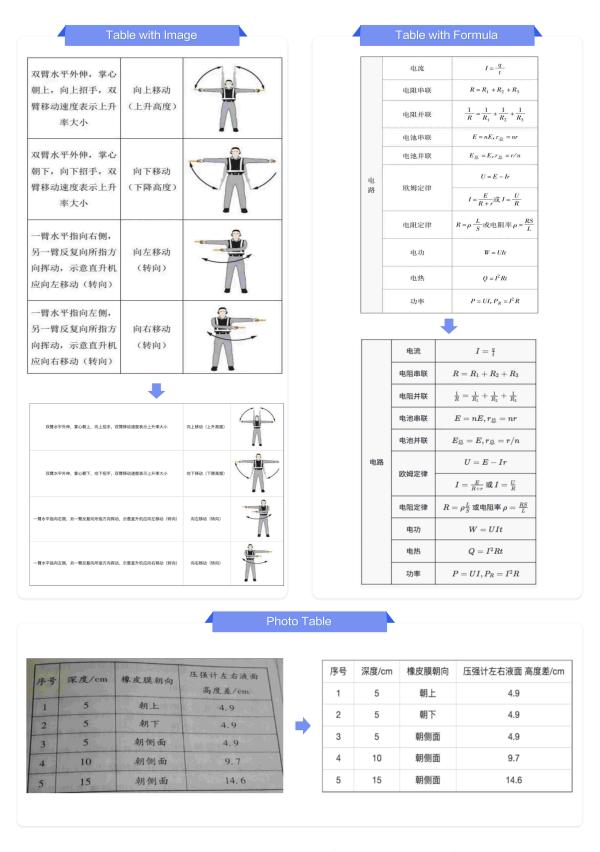


Figure A24 | The markdown output for various types of Tables.

D.6. Formula Recognition

$$\frac{6f''(x_2)(\nu(\lambda_1^2-1+\theta^2f(x_2)^2)+f'(x_2)^2-1)}{f'(x_2)}-\frac{6\theta^2f(x_2)(\lambda_1^2-1+\theta^2f(x_2)^2+\nu(f'(x_2)^2-1))}{f'(x_2)}$$

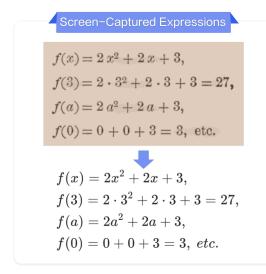
$$+\ldots+\frac{4H^2\lambda_1^2\theta^2(1-\nu)f'(x_2)f''(x_2)}{\lambda_1^2+\theta^2f(x_2)^2}-\frac{H^2\lambda_1^2\theta^4(1-\nu)f(x_2)f'(x_2)(\lambda_1^2+\theta^2f(x_2)^2+f'(x_2)^2)}{(\lambda_1^2+\theta^2f(x_2)^2)^2}$$

$$+\ldots+12f'(x_2)(\theta^2\nu f(x_2)+f''(x_2))=0.$$

$$\frac{6f''(x_2)(\nu(\lambda_1^2-1+\theta^2f(x_2)^2)+f'(x_2)^2-1)}{f'(x_2)}-\frac{6\theta^2f(x_2)(\lambda_1^2-1+\theta^2f(x_2)^2+\nu(f'(x_2)^2-1))}{f'(x_2)}$$

$$+\ldots+\frac{4H^2\lambda_1^2\theta^2(1-\nu)f'(x_2)f''(x_2)}{\lambda_1^2+\theta^2f(x_2)^2}-\frac{H^2\lambda_1^2\theta^4(1-\nu)f(x_2)f'(x_2)(\lambda_1^2+\theta^2f(x_2)^2+f'(x_2)^2)}{(\lambda_1^2+\theta^2f(x_2)^2)^2}$$

$$+\ldots+12f'(x_2)(\theta^2\nu f(x_2)+f''(x_2))=0.$$



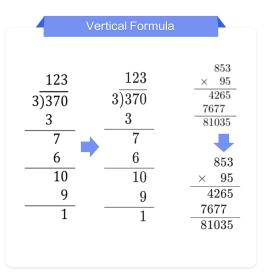
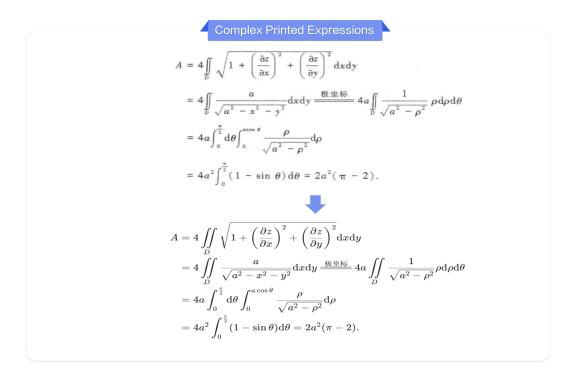


Figure A25 | The markdown output for various types of Formulas.



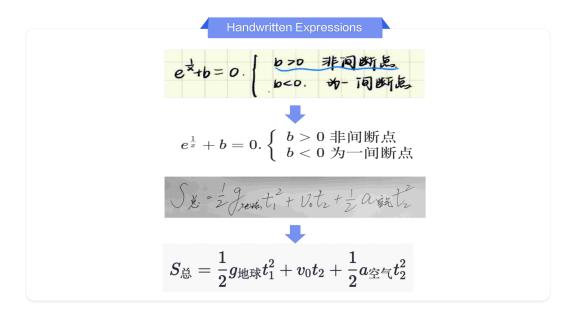


Figure A26 | The markdown output for various types of Formulas.

D.7. Chart Recognition

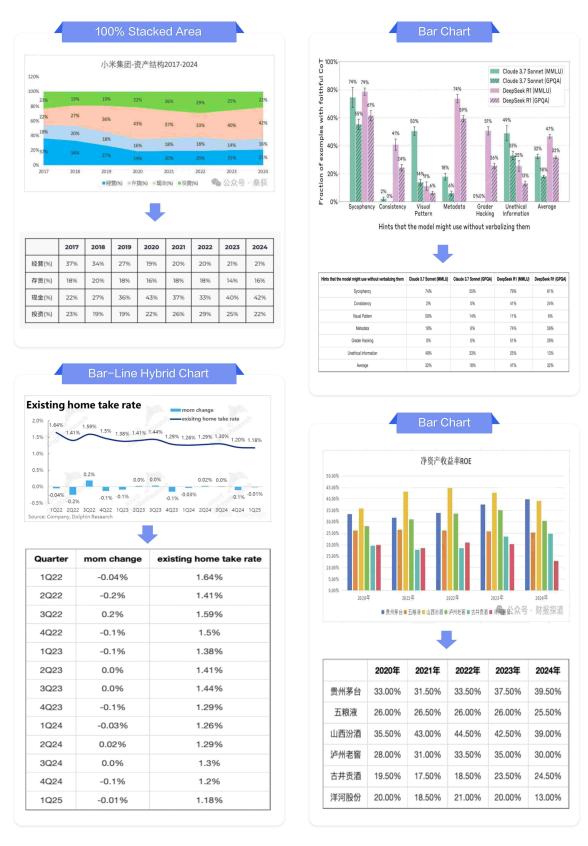


Figure A27 | The markdown output for various types of Charts.

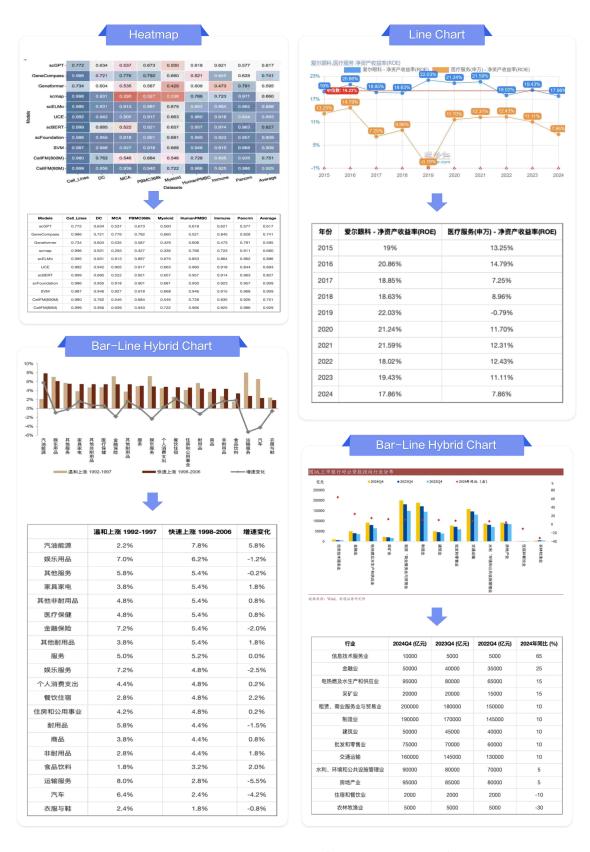


Figure A28 | The markdown output for various types of Charts.

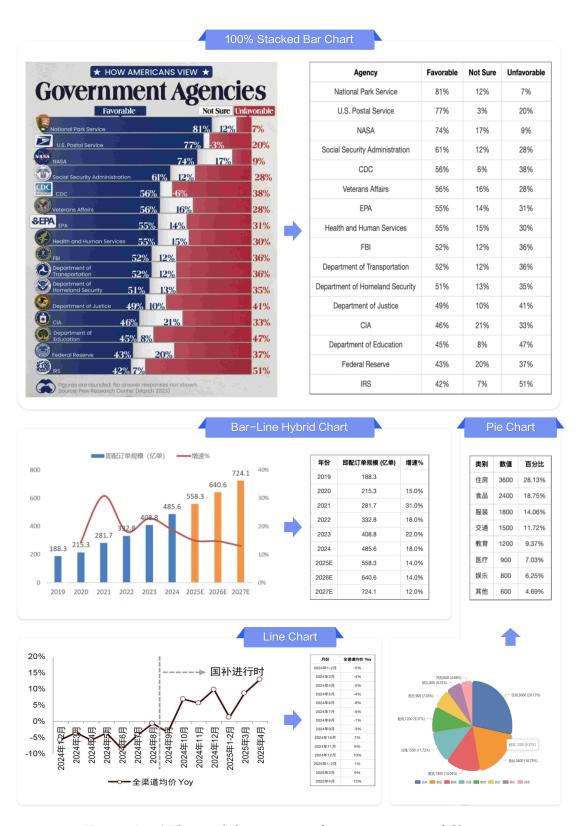


Figure A29 | The markdown output for various types of Charts.

E. Compare with Others

PaddleOCR-VL showcases superior performance in scenarios involving PDF pages with complex layout, consistently outperforming existing state-of-the-art (SOTA) models. This is evident from Figures A30 and A31, which highlight its exceptional capability in handling pages with intricate layouts and unique elements, surpassing other solutions.

Moreover, the model demonstrates exceptionally high recognition accuracy in several domains, including Multilingual Text Recognition, Handwriting Text Recognition, and Vertical Text Recognition. Figures A32- A37 illustrate how PaddleOCR-VL outperforms competitors such as MinerU2.5 [2] and MonkeyOCR [1], which tend to misidentify languages like Russian and Hindi as English, overlook some handwritten characters, and struggle with vertical text recognition.

In dealing with complex tables, PaddleOCR-VL's parsing accuracy stands out, as evidenced by Figures A38 and A39. This is a domain where other models frequently encounter difficulties.

Additionally, Figure A40 demonstrates PaddleOCR-VL's proficiency in accurately parsing complex formulas. In contrast, other SOTA models often produce incorrect or flawed outputs when faced with challenging mathematical notations.

Finally, as depicted in Figures A41 and A42, PaddleOCR-VL also excels in Chart Recognition. It outperforms multi-modal large language models like Qwen2.5VL-72B [24] and GPT-40 by accurately reconstructing the structure and content of charts.

E.1. Layout Detection

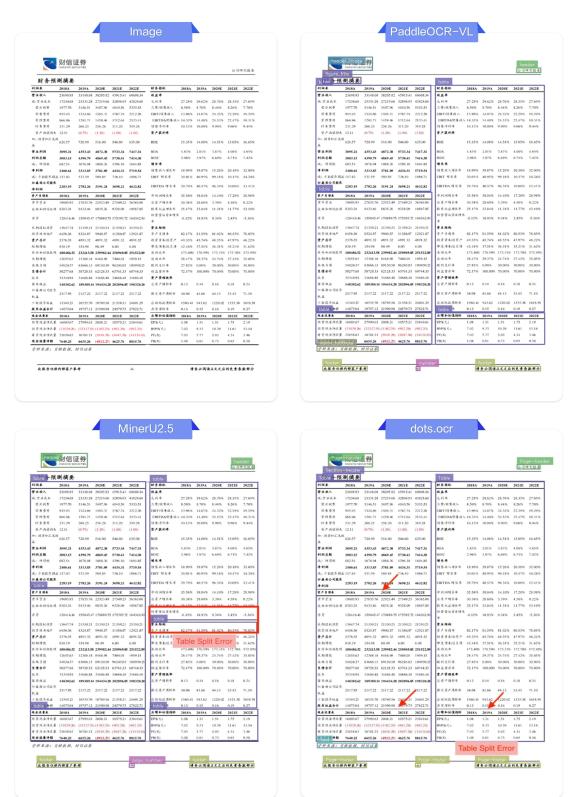


Figure A30 | Compare with others in Layout Detection.

Figure A31 | Compare with others in Layout Detection.

E.2. Text Recognition

E.2.1. Multilingual Text Recognition

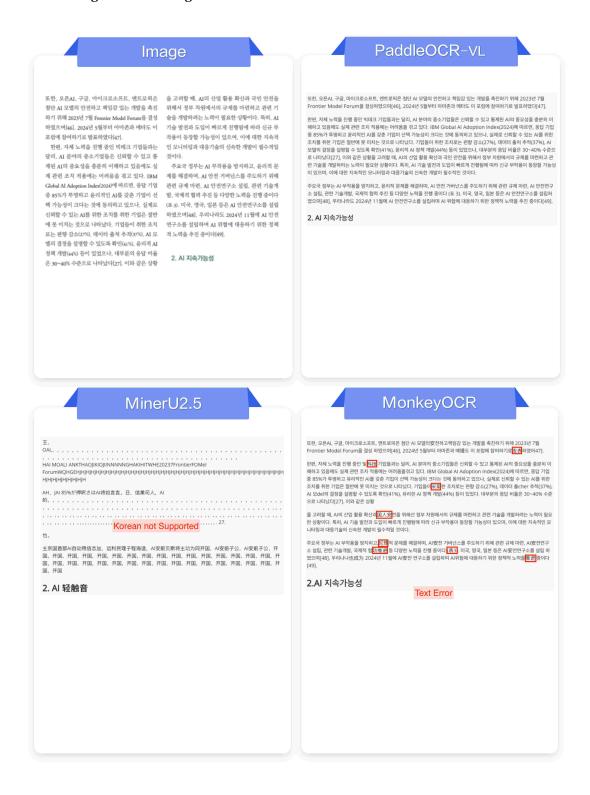


Figure A32 | Compare with others in Multilingual Text Recognition.

PaddleOCR-VL **Image** संदर्भ : संदर्भ : . मीम, बपु एवं डॉ. कल्पना लाल। "अमस्कांत के उपन्यास साहित्य में सामाजिक यावार्थ।" International Research Journal of Management Sociology & Humanities (RJN/SH), खंड 9, अंक 4, 2015, पृत्र 307-309) 2. मीमाडी एवं डॉ. नविता रानी। "दिशे साहित्य में आपूरिक दालि विकार के साहित्य की अध्यारमा का अध्यारमा 'Journal of Advances and Scholarly Researches in Allied Education (Lg/SAR), ढॉ. डॉ. अ क्ष्य 4, 2021, पृत्र 1014-1020) 3. लात, सुमन एवं डॉ. विनेद कुमार यादश। "हिन्दी साहित्य में अमसंद का दलित विवार्ध के संदर्भ में विक्लेषणात्मक अध्यायन।" Journal of Advances and Scholarly Researches in Allied Education (Lg/SAR), ढॉ. डॉ. 17, ऑक 1, 2020, पृत्य 401 Allor Researches in Allied Education (Lg/SAR), ढॉ. डॉ. जिस हमा अध्यायन।" Journal of Advances and Scholarly Researches in Allied Education (Lg/SAR), ढॉ. डॉ. डॉ. अंक 1, 2021, पृत्र 219-2251 5. आहात। "चेक्स दे कल साहित्य में साल देशित सहित्य मां आपिक स्थितिक चित्र मां शास्त्र की अस्ति का चित्रमा (FRESEARCH REVIEW International Journal of Multidisciplinary, खंड 3, अंक 12, 2018) 6. लांग, स्तित्र। "अम्प्रक्राक्ष साहित्य में स्तित में देशित में विलार्ध में बिंगा (में बंगा) स्थित स्थातिका में अप 2, 201, पृत्र 2551 7. सिंह, वॉ. सम्बन्धाना "दिश्र अस्त साहित्य में दिले में दिले सिंह सम्बन्ध के स्थातिक स्थातिका स्थातिक स्थातिक स्थातिक स्थातिक स्थातिक स्थातिक स्थातिक स्थातिका स्थातिक स्थातिक स्थातिका स्थातिक स्थातिका ISH), खंड 9, अंक 4, 2018, पृष्ठ 307-309। मीनाक्षी एवं डॉ. नविता रानी। "हिंदी साहित्य में आधुनिक दलित विमर्श के साहित्य की अवधारणा का अध्ययन।" Jou मानाबा एवं ठाः नावता राना । एवर्रा चाल्वर म जानुनन्य दाराव प्रमान के चाल्वर के जनवारण व Scholarly Researches in Allied Education (JASRAE), खेंठ 18, अंक 4, 2021, पृष्ठ 1014-10201 तता, सुमन एवं ठाँ. विनोद कुमार यादवा । हिन्दी साहित्य में प्रेमचंद का दितित विमर्श के संदर्भ में विश्लेष and Scholarly Researches in Allied Education (MSRAE), शॉंड 17, ऑक 1, 2020, 'पूर्व 401 4051 लता, सुमन एवं डॉ. विनोद कुमार पादव। 'हिन्दी साहित्य में आधुनिक दलित विमर्शी' Journal of Advar Allied Education (MSRAE), शॅंड 18, ओक 1, 2021, 'पृष्ठ 219-2251 5. अज्ञात। "प्रेमचंद के कथा साहित्य में भारत की दलित महिलाओं की सामाजिक स्थिति का चित्रण।" RESEARCH REVIEW Int of Multidisciplinary, खेंड 3, अंक 12, 2018। लामा, सरोज। "ओमप्रकाश वाल्मीकि के साहित्य में दलित बेतना।" नॉर्थ बंगाल विश्वविद्यालय शोध पत्र, 2021, पृष्ठ 253। 7. सिंह, डॉ. रामनारायण। "हिंदी कथा साहित्य में दलित विमर्श।" साहित्य सागर, खंड 12, अंक 2, 2019, पुष्ठ 45-52। . तत्त्व, क. राज्याचनाः । क्रान्याचनाः क्षान्याचान्य साधान्य तात्त्वः तत्त्वः कर्यः, २००८ ५, ५० ४० ४० ४० ४० ४० ६ २०६८० ही. ८०,६६६४ १० अम्बस्तित के क्षत्रियोगे येत्तिन संस्थानाः "हिंदी अनुसंसानः इतः ५३,४६६ १८२०६ ५७ ४७ ३३४०। 9. कुमार, डॉ. अजया "दितित साहित्य का समाजसात्त्रीय अध्यापनाः समाज विज्ञान शोध पत्रिकाः, खंड २२, अंक ३, २०१८, पृष्ठ 89-96। 10. वर्षां, डॉ. रेखाः "हिंदी अभ्यासों में दत्तिन विषयीं" साहित्य समीक्षाः, खंड १८, अंक ४, २०२१, पृष्ठ 112-118। सिंह, डॉ. रामनारायण। 'हिंदी कथा साहित्य में दलित विमर्थ।" साहित्य सागर, खंड 12, अंक 2, 2019, पृष्ठ 45-52। तकु, तो, प्रभारतियार (तक्ष्म प्रमाणिक पात्राप्त प्रभारती प्रमाणिक प्रमाणिक प्रमाणिक प्रमाणिक प्रमाणिक प्रमाणिक बनाग, तो सुम्मा। अभरकारित की कहानियों में रितिस संवेदना। हिंदी अनुसाम, रहित 15, और 1, 2020, पृष्ठ 3,401 बुमार, तों, अलग। 'दित्ती साहित्य का समाज्यासाँप अध्यमन। समाज विवान सोध पत्रिका, रहित 2, और 3, 2018, पृष्ठ 8,961 वर्मा, तों रेसा। 'हिंदी तपन्यसाँ में दलित विमार्च। साहित्य समीक्ष, खंड 18, और 4, 2021, पृष्ठ 112-118। 11. सिंह, डॉ. मनीषा। "अमरकांत के साहित्य में सामाजिक न्याय की अवधारणा।" हिंदी साहित्य पिक्समा, खंड 7, अंक 2, 2019, पृष्ठ 58-11. सिंह, डॉ. मनीषा। "अमरकांत के साहित्य में सामाजिक न्याय की अवधारणा।" हिंदी साहित्य परिक्रमा, खंड ७, अंक २, २०१९, पृष्ठ 58-65। 12. मिश्रा. डॉ. विनोद। "दलित विमर्श और हिंदी कहानी।" कथा भारतीय. खंड 14. अंक 3. 2020. पष्ठ 77-84। ी. आहेती, हों, कविता। "अमरकांत की कहानियों में हाशिए के लोग।" साहित्य लोक, खंड 9, 3, 2021, पुष्ट 25-32। 14. कुमार, डॉ. राजेश। "दलित साहित्य: स्वरूप और संदर्भ।" साहित्य विमर्श, खंड 11, अंक 2, 2018, पुष्ट 99-106। 13. जोशी, डॉ. कविता। "अमरकांत की कहानियों में हाशिए के लोग।" साहित्य लोक, खंड 9, अंक 1, 2021, पृष्ठ 25-32। अपार, दों र तेथा। "तीरत सहित, करण और संदर्भ "सहित प्रियम, खंड 1, अंड 2, 2018, १८ 92-2011 अगर, दों र तेथा। "तीरत सहित, करण और संदर्भ "सहित प्रियम, खंड 1, अंड 2, 2018, १८ 99-2061 सिंह, दों, ग्रीति। 'हिंदी कहानी में दिखित फेला। 'क्या सागर, खंड 16, अंड 2, 2019, १९ 66-731 कुमार, दों, राकेशा। "असरकांत के साहित्य में प्राणीय जीवन और दक्षित पाता। हिंदी साहित्य राष्ट्र, खंड 10, अंड 2, 2020, १८ 81-881 15. सिंह, डॉ. प्रीति। "हिंदी कहानी में दलित चेतना।" कथा सागर, खंड 16, अंक 3, 2019, पुष्ठ 66-73 कुमार, डॉ. राकेश। "अमरकांत के साहित्य में ग्रामीण जीवन और दलित पात्र।" हिंदी साहित्य दृष्टि, खंड 10, अंक 2, 2020, पुष्ठ 41- कुमार, डॉ. संबीच। "दांतित क्षिमर्डा, एक पूर्वार्वियार।" साहित्य संवाद, संव 13, अंक 1, 2021, पृष्ठ 54-61 प्रम्त, डॉ. सांबि। "अमरकांत की कड़नियों में सामाजिक पथार्थ और दांतित जीवन।" कथा जगत, संव 8, अंक 4, 2019, पृष्ठ 29-361 प्रार्मा, डॉ. नविन। "दांतित साहित्य का विकास और उसकी भूमिका।" साहित्य पाण, संव 21, अंक 2, 2020, पृष्ठ 63-71। 401 [7. कुमार, हों. संजीव। "दालित विमर्श: एक पूर्वार्वियार।" साहित्य संवाद, खंड 13, अंक 1, 2021, पूच 54-611 18. फ़म, हो. संजी। "प्राप्तकांत की कामियाँ में सामाजिक वासवों और दासित जीवन। "क्या जगत, खंड 8, अंक 4, 2019, पूछ 29-361 19. शर्मा, हों. संबीर। "दासित साहित्य का विकास और उसकी पूर्विका।" साहित्य याता, खंड 17, अंक 2, 2020, पूछ 63-711 2, पूचा, हों. दूसरेश। "अमरकांत की कामियों में दासित जीवन और संबंध।" हिंदी साहित्य समीका, खंड 20, अंक 1, 2021, पूछ 88-951 गुप्ता, डॉ. सुरेश। "अमरकांत की कहानियों में दलित जीवन और संघर्ष।" हिंदी साहित्य समीक्षा, खंड 20, अंक 1, 2021, पृष्ठ 88-95। ु राज्या कुरार जनसम्बार का कक्षानया म दालत जावन आर संस्थी। 'हिंदी साहित्य समीक्षा, खंड 20, अंक 1, 2021, पृष्ठ 88-951 सरसेना, डॉ. अनिता। "हिंदी कथा साहित्य में दलित विमर्श की प्रवृतियों।" भारतीय साहित्य शोध पत्रिका, खंड 19, अंक 3, 2020, पृष्ठ 74-821 21. सबसेना, डॉ. अनिता। "हिंदी कथा साहित्य में दलित विमर्श की प्रवृत्तियाँ।" भारतीय साहित्य शोध पत्रिका, खंड 19, अंक 3, 2020, पृष्ठ 74-82।

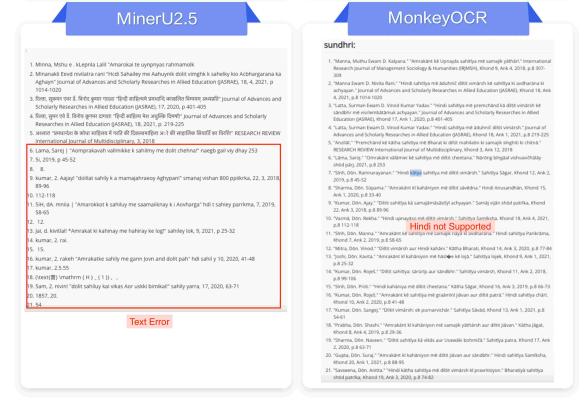


Figure A33 | Compare with others in Multilingual Text Recognition.

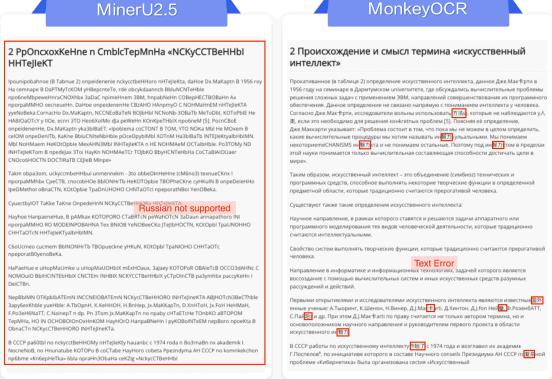


Figure A34 | Compare with others in Multilingual Text Recognition.

E.2.2. Handwriting Text Recognition

PaddleOCR-VL

致每位同伴亚洲巡演的SWITH

SWITH你好~

亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起,一直来支持我们,感到很安心。在每个演唱会,粉丝签名会和者其他日程中,都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱,很多人说自己的韩语不好很抱歉,但其实完全不需要道歉!并且想对大家说封信我都读了都很感谢。而且我决定一定要给你们写回一封信!感谢你们祝我安全飞行,愉快的一天感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西,但感谢你们为我推荐好看的,好吃的和能享受的东西。最重要的是感谢你们一直相信我,等待着我,而且会跟我们在以后的前途会在一起。尽管我们的国籍不同,语言和文化也有差异,但通过音乐

MinerU2.5

亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起,一直来支持我们,感到很安心。在每个演唱会、粉丝签名会和着其他日程中,都能够感受到每位SWITH的温暖的真心,虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱很多人说自己的韩语不好很抱歉,但其实完全不需要道歉",并且想对大家说封信我都要了都很感谢,而且我决定一定要给你们写回一封信",感谢你们祝我安全飞行,愉快的一天,感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西,但感谢你们为我推荐好看的,好吃的和能享受的东西。最重要的是感谢你们一直相信我,等待着我,而且会跟我们在以后的前途会在一起。尽管我们的国籍不同,语言和文化也有差异,但通过音乐

Missing Text

MonkeyOCR

亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起,一直来支持我们,感到很安心。在每个演唱会,粉丝签名会和者其他日程中,都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱,很多人说自己,的韩语不好很抱歉,但其实完全不需要道歉!!并且想对大家说,封信我都读了,都很感谢。而且我决定一定要给你们写回一封信!!感谢你们祝我安全飞行,愉快的一天!感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西,但感谢你们为我推荐好看的,好吃的和能享受的东西。最重要的是感谢你们一直相信我,等待着我,而且会跟我们在以后的前途会在一起。尽管我们的国籍不同,语言和文化也有差异,但通过音乐

Missing Text

Figure A35 | Compare with others in Handwriting Text Recognition.

Image

之后 想象得那么容易 没 都在努力奔跑,因为我帝 们 渐 有为你更加劣 好 渐 我 给 老 才发 像 玄 于你更多 你 尽管我 现 们 我没 成 直 为很 我 カ 能 让 的 尽快 所 懊悔荒废 我 我 羽 感受到 wh 主 聖 害怕 让 的 望 现在 你 人并 时 有一 的。 的 光 的 日 E 每 子 浙 餘

PaddleOCR-VL

你们,就像你们一直让我感受到的。可长大之后,我才发现成为很厉害的人并没有我想象得那么容易。我懊悔荒废的日子里,我不要有为你更加努力。我害怕时尽没有为你更加努力。我没能尽好,你渐渐老去。我没能尽好,你感受到更多美好,给予你更多。所以,现在的每天,我都是有一天的,现在的骄傲。尽管我的羽翼不声,肩膀

MinerU2.5

你们就像你们一直让我感受到的。可长大之后,我才发现成为很厉害的人并没有我想象得那么容易。我懊悔荒度的日子里我没有为你更加努力。我害怕时光飞逝,你渐渐老去。我没能尽快让你感 受到更

多美子合尔更多巧与见书

Text Error

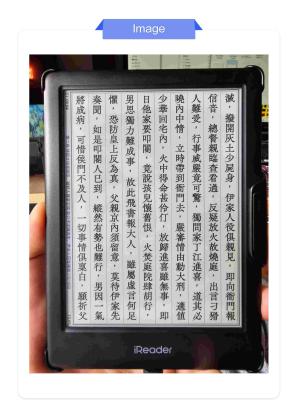
我都在努力奔跑因为我希望有一天成为你的骄傲。尽管我的羽翼不丰满,有膀

MonkeyOCR

你们,就像你们一直让我感受到的。可长大之后,我才发现成为很厉害的人并没有我想象得那么容易。我懊悔荒废的日子里,我没有为你更加努力。我害怕时光飞逝,你渐渐老去。我没能尽快让你感受到更多美好给予你更多。所以,现在的每天,我都在努力奔跑,因为我希望有一天能成为你的骄傲。尽管我的羽翼不满,脊膘

Figure A36 | Compare with others in Handwriting Text Recognition.

E.2.3. Vertical Text Recognition



PaddleOCR-VI

MinerU2.5

將成病,可惜侯門不及人,一切事情俱禀白,顯祈父奏聞,如是叩闆人已到,縱然有勢也難行,男因一氣懷,恐防皇上反為真,父親京內須留意,莫待伊家先Incorrect reading order 男思獨力難成事,故此飛書報大人,雖屬虚言何足日他家要叩闋,竟說孩兒懷舊恨,火焚庭院肆胡行,少華回宅內,火中得命甚伶仃,放歸進喜雖無事,即曉內中情,立時帶到衛門去,嚴審情由動大刑,適值人難受,行事威嚴竟可驚,獨問家丁江進喜,道其必信音,總督親臨查看過,反疑放火故燒庭,出言刁猾滅,撥開灰土少屍身,伊家人役俱親見,即向衙門報

MonkeyOCR

男思独力难成事,故此飞书报大人,虽属虚言何足恢,恐防皇上反为真,父亲京内须留意,莫待伊家先奏闻,如是叩衙人已到,纵然有势也难行,男因一气将成病,可惜侯门不及人,一切事情俱禀白,愿祈父

滅,拨開灰土少尸身,伊家人役俱親見,即向衙門報信音,總督親臨查看過,反疑放火故烧庭,出言刁猾人難受,行事威嚴竟可惊,獨問家丁江進喜,道其必晓內中情,立時带到衙门去,嚴審情由動大刑,適值少hra回宅內,火中得命甚伶仃,放歸進喜虽無事,即日他家要叩都是非常,竟設孩儿怀古恨,火焚庭院肆胡行,

Figure A37 | Compare with others in Vertical Text Recognition.

E.3. Table Recognition

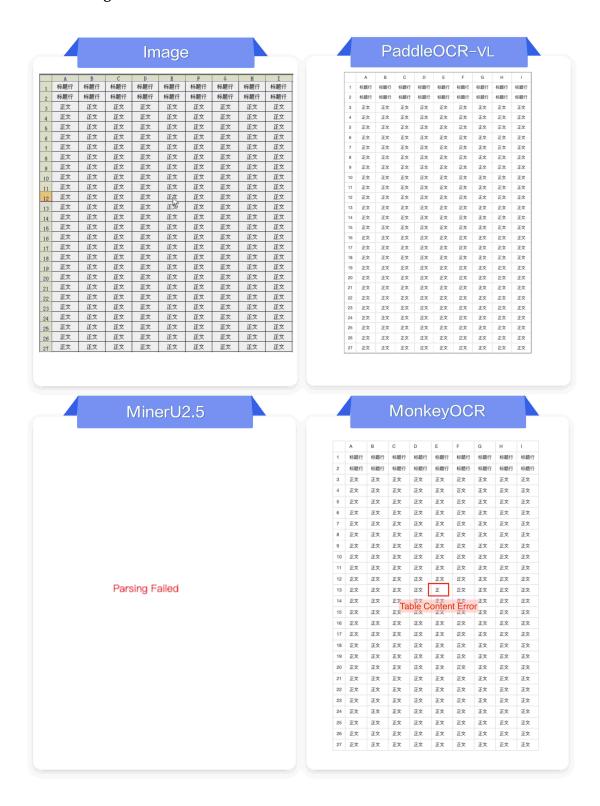


Figure A38 | Compare with others in Table Recognition.

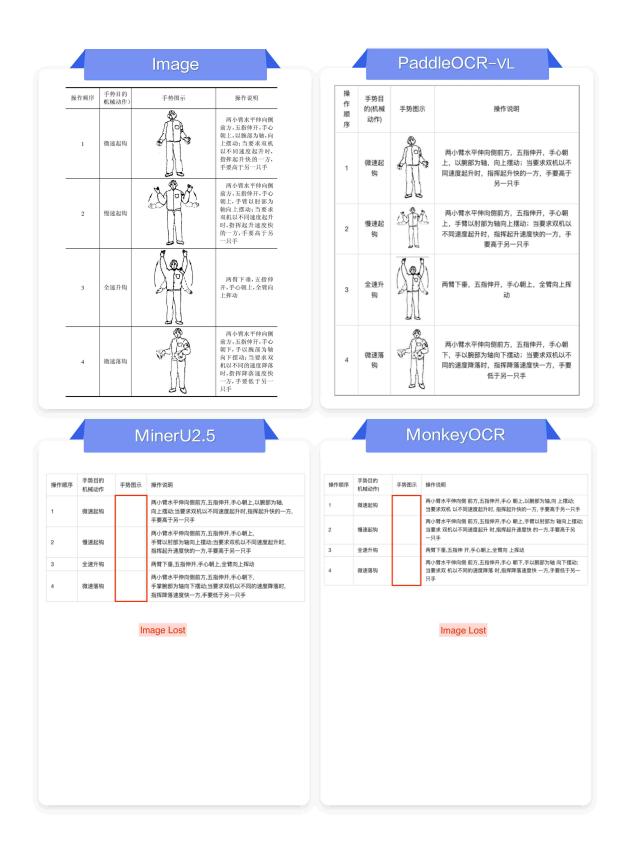


Figure A39 | Compare with others in Table Recognition.

E.4. Formula Recognition

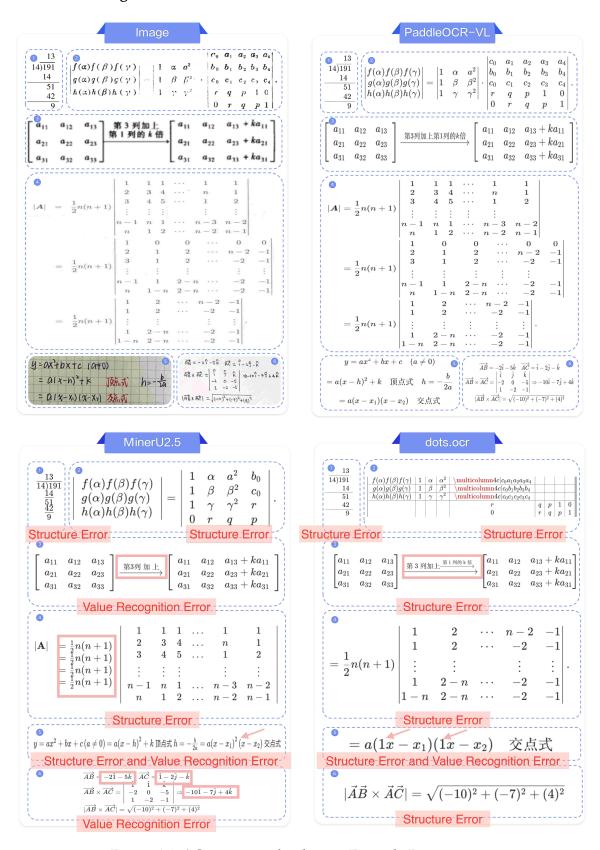


Figure A40 | Compare with others in Formula Recognition.

E.5. Chart Recognition

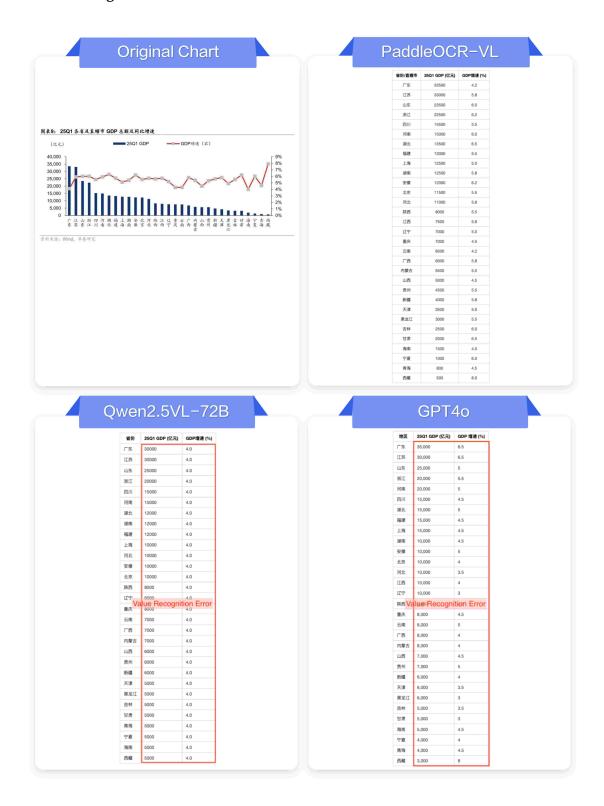


Figure A41 | Compare with others in Chart Recognition.

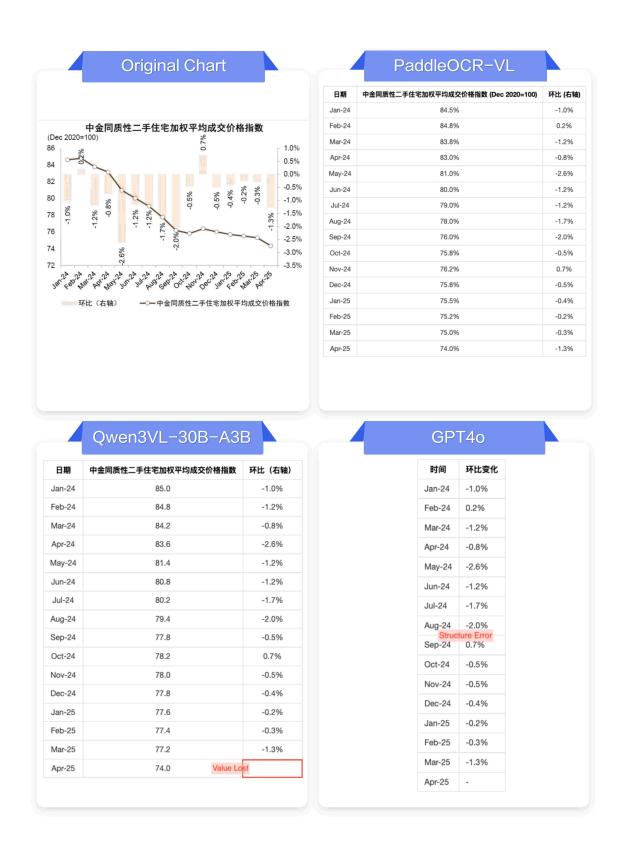


Figure A42 | Compare with others in Chart Recognition.